

Approximate reliabilities and MiX99

Ismo Strandén, MTT

Talk outline

- Approximation is 2 steps
- Some simple examples
- Random regression model example
- What is the difference

Approximation of reliabilities by ApaX

 Need elements from inverse of coefficient matrix of the mixed model equations:

$$egin{bmatrix} \mathbf{X'X} & \mathbf{X'Z} \ \mathbf{Z'X} & \mathbf{Z'Z} + \lambda \mathbf{A}^{-1} \end{bmatrix}^{-1}$$
 or $egin{bmatrix} \mathbf{X'R}^{-1}\mathbf{X} & \mathbf{X'R}^{-1}\mathbf{Z} \ \mathbf{Z'R}^{-1}\mathbf{X} & \mathbf{Z'R}^{-1}\mathbf{Z} + \mathbf{A}^{-1} \otimes \mathbf{G}^{-1} \end{bmatrix}^{-1}$

- Approximations split the work into 2 steps:
 - Approximate amount of information due to records
 - Approximate amount of information due to pedigree information
- 2 steps in ApaX
 - 1st step is the same: record information
 - 2nd step can be chosen: pedigree information

The first step

- Approximates information in estimation of contemporary groups
- Idea: all other effects have so much information that reliability is hardly affected
 - Effect having lowest estimation accuracy is accounted == contemporary group effect such as herd-year
- Memory is saved by requiring contemporary group to be a within block effect
 - all within blocks effects are used but in practice there should be only one within block effect by trait
 - If not, then these effects may cancel each other in the approximation -> singularity warnings

Example: CLIM file and ApaX instructions

```
CLIM:
 DATAFILE
            data renum pruned.dat # Data file
            animal someth ones
  INTEGER
  REAL
            y1 y2 y3
  PEDFILE
            pedig pruned.ped
            animal am
  PEDIGREE
           PEDIGREECODE=animal
  DATASORT
  PARFILE
            blup.par
           b f
 PRECON
```

No withinblocks: no fixed effect accounting!

The only within block effect is 'animal'

PEDIGREECODE needed: this tells Apax which is animal genetics;

NOTE: maternal effect models is case clearly indicates importance of iformation

```
ApaX:
```

MODEL

v1 = ones animal

```
# reliability method
# number of non-zeros in sparse maNumber of within block effects:
1000000
# original dir file
 MiX99 DIR.DIR
# J filter
```

```
Effects that have been defined within the block
are accounted approximately in the calculations.
```

Effect# Description Animal genetic effect

Give effect# ABOVE WHICH EXACT absorption is used. For example: giving 3 means that only effect 2 is exactly absorbed. Number should be: >> # J filter

All absorption is exact.

>> 2

Misztal&Wiggans (mthd 2) vs. exact

Reliability

Difference: $r^2(M&W) - r^2(exact)$

Misztal&Wiggans vs. Jamrozik&Schaeffer

Reliability

Misztal&Wiggans vs. Tier&Meyer

Reliability

Simple animal model example

		Exact	M&W	J&S	T&M
1 2 2 2 3 2 4 1 5 1 6 1 7 0 8 0	. 0 0 0 1 1 1	0.16932 0.16554 0.16013 0.38048 0.39496 0.38886 0.41993 0.39378	0.17094 0.17155 0.16503 0.38193 0.39056 0.39052 0.41561 0.38509	0.14574 0.16993 0.16197 0.38068 0.38912 0.38714 0.41555 0.38454	0.16993 0.16993 0.16197 0.38068 0.38873 0.38966 0.40854 0.38302

1 2 0 0.57812E-01	0.17094	0.14574	0.16993
2 2 0 0.15809E-01	0.17155	0.16993	0.16993
3 2 0 0.87082E-01	0.16503	0.16197	0.16197
4 1 1 0.14464	0.38193	0.38068	0.38068
5 1 1 0.14379	0.39056	0.38912	0.38873
6 1 1 0.11543	0.39052	0.38714	0.38966
7 0 1 0.11629	0.41561	0.41555	0.40854
8 0 1 0.15527	0.38509	0.38454	0.38302

The added fixed effect not accounted in the approximations. Need to define it as a within block effect.

```
AM.var
                                                                       PARFILE
                                                                       MODEL
                                                                         weaningW = animal
When only additive genetic effect, approximations work.
                                                                                 AM. dat
                                                                      DATAFILE
                                                                                 animal sex
                                                                      INTEGER
                                                                      REAL
                                                                                weaningW
                                                                      PEDFILE
                                                                                 AM.ped
                                                                                 animal am
                                                                      PEDIGREE
                                                                      DATASORT
                                                                                PEDIGREECODE=animal
                                                                      PARFILE
                                                                                 AM.var
                                                                      MODEL
                                                                        weaningW = sex animal
```

DATAFILE

INTEGER REAL

PEDFILE

PEDIGREE

DATASORT

AM.dat

animal sex

weaningW

animal am

PEDIGREECODE=animal

AM.ped

Simple animal model example

		Exact	M&W	J&S	T&M
1	2	0 0.57812E-01	$0.1709\overline{4}$	0.14574	0.16993
2	2	0 0.15809E-01	0.17155	0.16993	0.16993
3	2	0 0.87082E-01	0.16503	0.16197	0.16197
4	1	1 0.14464	0.38193	0.38068	0.38068
5	1	1 0.14379			
6	1	1 0.11543 App	proximation	ns do not v	work well
7	Θ	1 0.11629	0.41561	0.41555	0.40854
8	Θ	1 0.15527	0.38509	0.38454	0.38302

INTEGER animal sex
REAL weaningW

PEDFILE AM.ped
PEDIGREE animal am
DATASORT PEDIGREECODE=animal

PARFILE AM.var

MODEL

weaningW = sex animal

No fixed effect accounted in reliability approximation

```
0 0.57812E-01
                                  0.12384
                                             0.10334
                                                      0.12350
                  0 0.15809E-01
                                                      0.11343
                                  0.11406
                                             0.11343
                  0 0.87082E-01
                                                      0.11554
                                  0.11667
                                             0.11554
                  1 0.14464
                                             0.29342
                                                      0.29342
                                  0.29395
                  1 0.14379
                                                      0.25805
                                  0.25914
                                             0.25832
                  1 0.11543
                                  0.25986
                                             0.25632
                                                      0.25932
                  1 0.11629
                                  0.31936
                                             0.31932
                                                      0.31529
                  1 0.15527
8
                                             0.28973
                                  0.29034
                                                      0.28928
```

DATAFILE AM.dat

INTEGER animal sex
REAL weaningW

PEDFILE AM.ped
PEDIGREE animal am
DATASORT PEDIGREECODE=animal

PARFILE AM.var

When fixed effect is account, approximation do better but still different from exact.

MODEL
weaningW = sex animal

Simple animal model example

	Exact	M&W	J&S	T&M		
1 2 2 2 3 2 4 1 5 1 6 1 7 0 8 0	0 0.57812E-01 0 0.15809E-01 0 0.87082E-01 1 0.14464 1 0.14379 1 0.11543 1 0.11629 1 0.15527	0.12384 0.11406 0.11667 0.29395 0.25914 0.25986 0.31936 0.29034	0.10334 0.11343 0.11554 0.29342 0.25832 0.25632 0.31932 0.28973	0.12350 0.11343 0.11554 0.29342 0.25805 0.25932 0.31529 0.28928	DATAFILE INTEGER REAL PEDFILE PEDIGREE DATASORT PARFILE WITHINBLO	AM.dat animal sex weaningW AM.ped animal am PEDIGREECODE=animal AM.var OCK animal sex

Fixed effect has not many observations by level → not penalized enough → approximations give too large reliabilities.

Random regression models

- Interest is in functions not values of random regression
- Functions can be used only by table file
 - Need values of function at many instances (eg. by DIM)
 - Table file tells values of function at different values
- ApaX needs to be told which values to use
 - First instance
 - Number of instances
 - Step

CLIM file

```
DATAFILE RRANK.dat
INTEGER herd animal LAC ANIXLAC HY HTD Hslope YM &
         MTHx4YR AGEclass DCC DDRY DIM residual num
         milk protein fat
REAL
RESIDUAL residual num
TableIndex DIM
DATASORT BLOCK=herd PEDIGREECODE=animal
PEDFILE
         RRANK.ped
PEDIGREE G am
RANDOM HTD PE
NORANSOL HTD PE
PARFILE RRANK.var # Variance component file
RESIDFILE RRANK.res # Multiple residuals
TABLEFILE RRANK.cov # covariable table information
MISSING -9.
PRECON
                ddddb
WithinBlockOrder G PE HTD HY
MODEL NORANSOL
  milk = HY fix curve(t1 t2 t3 t4 t5 | LAC) HTD
          PE( t6 t7 t8 t9 t10 t11 t12 animal)@fst &
           G(t27 t28 t29 t30 t30 t32 t33| animal)@fst
  protein= HY fix_curve(t1 t2 t3 t4 t5 | LAC) HTD
          PE(t13 t14 t15 t16 t17 t18 t19| animal)@fst &
           G(t34 t35 t36 t37 t38 t39 t40| animal)@fst
  fat
        = HY fix curve(t1 t2 t3 t4 t5 | LAC) HTD
          PE(t20 t21 t22 t23 t24 t25 t26| animal)@fst &
           G(t41 t42 t43 t44 t45 t46 t47| animal)@fst
```


ApaX instruction file

3 # permanent environment exact, but HY & HTD approximated

```
# reliability method
# number of non-zeros in sparse matrix
# Does much matter because matrix size is increased dynamically
# Howeber, for large problems it good to be Effects that have been defined within the block
# because dynamic memory allocation procedu are accounted approximately in the calculations.
# First DIM value in the covariable table
                                            Number of within block effects:
# For each trait in the model give:
                                            Effect#
                                                       Description
# First DIM, Number of DIMs, DIM step
                                                            Animal genetic effect
                                                            Random effect number
# Now dims 15, 45, 75, ..., 305 (10 DIMs)
                                                            Random effect number
           # milk
15 30 10
                                                            Fixed effect
           # protein
15 30 10
           # fat
# original dir file
                                            Give effect# ABOVE WHICH EXACT absorption is used.
                                            For example: giving 3 means that only effect 2 is exactly absorbed.
MiX99 DIR.DIR
# Number of breeding values
                                            Number should be:
                                              >> # Absorption level effect number
# weights for the breeding values
                                              >> 3 # permanent environment exact, but HY & HTD approximated
# Each column is for a trait
          # milk
                                            Approx. absorption of effects
                                                                                                    4 to the first effect
                                            Exact absorption of effect 2 to the first effect
          # protein
          # fat
# random effects accounted in h2 calculations
# Absorption level effect number
```

Controls level of approximation in the first step.

Now: HTD and HY were approximately accounted.

Different steps by method

ApaX99:	M&W	approach
---------	-----	----------

Round	Norm
1	0.3416927
2	0.2028332
3	0.1369858
4	0.0955707
5	0.0668191
6	0.0467058
7	0.0326407
8	0.0228108
9	0.0159435
10	0.0111448
11	0.0077918
12	0.0054483
13	0.0038101
14	0.0026648
15	0.0018636
16	0.0013037
17	0.0009121
18	0.0006382
19	0.0004466
20	0.0003126
21	0.0002188
22	0.0001531
23	0.0001072
24	0.0000751
25	0.0000525
26	0.0000368
27	0.0000258
28	0.0000181
29	0.0000126

0.0000089

ApaX99: Jamrozik et al. approach	ApaX99: Tier & Meyer approach
Nanim= 20	
ApaX99: J&S step 1(d)	ApaX99: T&M step 1
ApaX99: J&S step 2	ApaX99: T&M step 2: youngest to oldest
ApaX99: J&S step 3	ApaX99: T&M step 3: oldest to youngest
	ApaX99: T&M step 4: Reliabilities

Solutions

```
herakles:~/MiX99/example/serial/reduced_rank_model> head -3 PEVani_0_orig
    1200000729
                                             0.26810
                                                         0.30445
                              11 0.30413
    1200000732
                               9 0.26793
                                             0.23172
                                                         0.26832
                              8 0.23160
    1200000734
                                             0.19971
                                                         0.22323
herakles:~/MiX99/example/serial/reduced rank model> head -3 PEVani 2 orig
    1200000729
                                             0.39708
                                                         0.45510
                              11 0.44833
                                                                           Misztal & Wiggans
    1200000732
                              9 0.38850
                                             0.33676
                                                         0.39368
    1200000734
                                             0.38141
                                                         0.42255
                               8 0.43023
herakles:~/MiX99/example/serial/reduced rank model> head -3 PEVani 3 orig
    1200000729
                             11 0.44458
                                             0.39379
                                                         0.45172
    1200000732
                              9 0.38748
                                             0.33577
                                                         0.39271
                                                                          Jamrozik&Schaeffer
    1200000734
                                             0.37793
                               8 0.42679
                                                         0.41903
herakles:~/MiX99/example/serial/reduced rank model> head -3 PEVani 4 orig
    1200000729
                                             0.39424
                                                         0.45026
                              11 0.44259
                                                                             Tier&Meyer
    1200000732
                              9 0.38657
                                             0.33544
                                                         0.39208
                              8 0.42109
    1200000734
                                            0.37453
                                                         0.41334
```

Approximations have their price: fast but reliabilities often larger than exact.

ApaX conclusions

- ApaX combines information from 2 sources:
 - Records
 - Pedigree
- Approximations in both sources of information
- Approxmations do not produce exact solutions
- Approximations tend to work well when data is dense:
 - Number of observations per fixed effect level large
 - Number of animals with observations large
- Approximations usually better when reliability is large

