MiX99 overview

Martin Lidauer, Kaarina Matilainen, Esa Mäntysaari, Timo Pitkänen, Matti Taskinen, Ismo Strandén

MiX99 workshop 2014, Tuusula, Finland
It started on a misery winter day in 1997, somewhere on a railway platform in Helsinki ...
The problem

Finnish test-day model project 1995-1999

• Need for an efficient software to solve test-day models
• Complex models: multiple trait, random regressions, ...
• Large data: millions of records ...
• Ambitious aim to perform continuous evaluations ...
• Commonly used solving algorithms were too slow

Earlier routine software developments

• Very efficient repeatability animal model solver...
• Multiple -trait maternal model solver...
• We wanted a general solver
Preconditioned conjugate gradient (PCG)

MME to be solved: \(Ca = r \)

Set:
\(a^{(0)} \leftarrow \text{initial guess}; \quad e^{(0)} \leftarrow r - Ca^{(0)} \)
\(d^{(0)} \leftarrow M^{-1}e^{(0)}; \quad f_0 \leftarrow e^{(0)}'d^{(0)} \)

For \(k = 1, 2, \ldots \)

- \(q^{(k)} \leftarrow Cd^{(k-1)}; \quad \alpha_k \leftarrow f_{k-1}/d^{(k)}'q^{(k)} \)
- \(a^{(k)} \leftarrow a^{(k-1)} + \alpha_k d^{(k-1)} \)

if \(k \) is divisible by 100
- \(e^{(k)} \leftarrow r - Ca^{(k)} \)

else
- \(e^{(k)} \leftarrow e^{(k-1)} - \alpha_k q^{(k)} \)

- \(s^{(k)} \leftarrow M^{-1}e^{(k)} \)

- \(f_k \leftarrow e^{(k)}s^{(k)}; \quad \beta_k \leftarrow f_k/f_{k-1} \)

- \(d^{(k+1)} \leftarrow s^{(k)} + \beta_k d^{(k)} \)

if not convergence continue iteration

- PCG solves the MME in a finite number of steps (given \(C \) is PD)
- Search steps are conjugate (\(C \)-orthogonal) and have steepest descent
- PCG is suitable for an iteration-on-data implementation
- Only \(Cd^{(k-1)} \) and \(M^{-1}e^{(k)} \) are computationally demanding
More speed

HP Breeding Project 1998-1999
(High-Performance Computing and Networking EU project)

- Faba co-op (initiator & responsible), Vantaa
- MTT, Jokioinen
- CSC-IT Center for Science, Espoo
- Finnish Agricultural Data Processing Center, Vantaa

AIM

Use of parallel computing in solving large mixed model equations

APPROACH

- 1. optimization of existing computer code for single processor
- 2. developing of parallel computing code using portable MPI library
3-step approach for PCG iteration-on-data

- Matrix multiplications for each animal q to get Cd:

$$Cd = \sum_{i=1}^{N_q} w_i R_i^{-1} w_i'd + V^{-1} d = \sum_{i=1}^{N_q} v_i + v_d$$

- Gauss-Seidel: in 2 steps

$$s_i \leftarrow R_i^{-1} w_i'd; \quad v_i \leftarrow w_i s_i$$

- PCG: possible in 3 steps

$$s_i \leftarrow w_i'd; \quad s_i^r \leftarrow R_i^{-1} s_i; \quad v_i \leftarrow w_i s_i^r$$

<table>
<thead>
<tr>
<th></th>
<th>Gauss-Seidel 2 steps</th>
<th>PCG 3 steps</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEA test-day model evaluation</td>
<td>2 580</td>
<td>118</td>
</tr>
<tr>
<td>Irish beef cattle evaluation</td>
<td>38 991</td>
<td>906</td>
</tr>
<tr>
<td>Nordic RDC test-day model evaluation</td>
<td>81 007</td>
<td>674</td>
</tr>
</tbody>
</table>

Solving Large Mixed Linear Models Using Preconditioned Conjugate Gradient Iteration
Strandén & Lidauer, 1999, J. Dairy Sci. 82:
Additional speed through parallel processing

- Data and equations are organized (by the pre-processor) to create data locality
- PCG iteration-on-data solver was re-written to make optimal use of parallel computing
- We achieved very satisfying speed-up, especially for cattle data

Parallel computing applied to breeding value estimation in dairy cattle
Strandén & Lidauer, 2001, J. Dairy Sci. 84:
1999: First release of MiX99

Model features
- Multiple traits
- Trait-specific model effects
- Random regression
- Reduction of model dimension (reduced rank)
- Maternal/paternal effects
- A^{-1}: options: animal model, sire/maternal grand sire, phantom parent groups

Solving features
- PCG
- Iteration-on-data
- Data locality
- Parallel processing
- Trait grouping

2000: MiX99 in routine use
Finnish test-day model evaluation
Heterogeneous variance adjustment

DEU-AUT test-day model project 2000-2002

- Need to account for heterogeneous variance (HV)
- Multiplicative mixed model approach (Meuwissen et al. 1996. JDS:79) implemented
- Computationally demanding approach → allows modelling of main sources of HV

Genetic SD for milk yield in cows classified by contemporary group size

Multiplicative random regression model for heterogeneous variance adjustment in genetic evaluation for milk yield in Simmental

- Applied residual variance estimation method
Approximation of reliabilities

Need to get reliabilities for Finnish and DEU-AUT routine evaluations

- **Interbull weighting factors** suitable for RR models (2000)

 Calculation of Interbull weighting factors for the Finnish test day model
 Strandén et al., 2002, Interbull Bulletin 26:

- **Exact reliabilities** (2000) limited to small size data

MiX99 for UK test-day model (2002-2004)

- **Misztal and Wiggans approach** (1988, J. Dairy Sci. 72,2:27-32)

ApaX
Non-linear models

Pig growth curve project 2003-2004

- **Gompertz function**: \(y_{ij} = a \exp(-\beta \exp(-\kappa t_{ij})) e^{ij}, j = 1, \ldots, n_i \)
- Implementation based on EBLUP-expansion method

UK beef and sheep project 2007-2009

- **Linear-threshold model**:
- Solving algorithm options:
 - Expectation Maximization
 - Newton Raphson

Estimation of non-linear growth models by linearization: a simulation study using a Gompertz function
Vuori et al., 2006. Genet. Sel. Evol. 38:

Linear-threshold animal model for birth weight, gestation length and calving ease in United Kingdom Limousin beef cattle data
Matilainen et al., 2009. Livest. Sci. 122:
Co-operation with Wageningen UR Livest. Res.

MiXBLUP project 2007-present

Need of a fast BLUP software for Windows platforms that allows state of the art models and is easy to use

Approach:

- Kernel from MiX99
- User-friendly interface
- Flexible data input
 - Allows also alpha numeric data
 - Derived variables
- New model options
 - Social effects
 - IBD matrices

TITLE EBVs for body weight 1 and body weight 2
DATAFILE datafile.txt !MISSING -999

animal A
gerd I
sex I
age1 R
age2 R
bw1 T
bw2 T

PEDFILE !groups 0.0
animal A
sire A
dam A
PARFILE para.dat

MODEL
bw1 ~ herd sex !random G(animal)
bw2 ~ herd sex !random G(animal)

SOLVING
!maxit 1000

MC- EM REML variance components (VC) for complex models

VC estimation for large models is computationally demanding

Idea:
- Fast BLUP software should enhance empirical REML

PhD project with Rothamsted Research, UK
- Extended for multiple trait models

- Computational demand significantly smaller compared to Gibbs sampling
Command Language Interface for MiX99 CLIM

MiX99 supports 2 input syntaxes

CLIM syntax

```plaintext
TITLE        TDM: 1. lactation milk yield, 2. order Legendre pol.
DATAFILE     /koel/testi/data/mTab.dat
INTEGER      herd animal htm ym age dcc season dim
REAL         milk
MISSING      0.0
DATASORT     BLOCK=herd PEDIGREECODE=animal
PEDFILE      /koel/testi/data/blk.ped
PEDIGREE     G am+p
TABLEFILE    covarmilk.tab
TABLEINDEX   dim
PARFILE      legendrepol.par

RANDOM       htm PE G
WITHINBLOCKORDER PE G htm herd
PRECON       d d b d m 1 1 2 2
NORANSOL     PE

MODEL
  milk = herd curve(1 t2 t3 t4 t5| season) age dcc ym &
  htm PE(t1 t2 t3| animal) G(t1 t2 t3| animal)
```

MiX99 instruction syntax

```
$ TITLE:  TDM: 1. lactation milk yield, 2. order Legendre pol.
$ INTEGER:  herd animal htm ym age dcc season dim
$ REAL:  milk
$ TRAITS:  1
$ TRAITGRP:  1
$ DATASORT:  1 2
$ FIXRAN:  9 7
$ MODEL:  TRAITGRP, trait, wgt: herd b0 b1 b2 b3 b4 age dcc ym htm s0 s1 s2 g0 g1 g2
  1 1 7 7 7 7 7 7 7 5 6 4 3 2 2 2 2 2
$ WITHINBLOCKORDER:  4 - - - - - - - - 3 1 1 1 1 2 2 2 2
$ RANDOM:  htm s0 s1 s2 g0 g1 g2
  1 2 2 3 3 3
$ RELATIONSHIPS:  number:
  3 1 1 1
$ REGRESS:  number:  herd b0 b1 b2 b3 b4 age dcc ym htm s0 s1 s2 g0 g1 g2
  16 cl cl cl cl cl t2 t3 t4 t5 cl cl cl cl t1 t2 t3 t1 t2 t3
$ COMBINE:  n
$ CVRFIL:  name of the file with covariable table
  covarmilk.tab
$ CVRNUM:  number of the covariable columns in the file
  5
$ CVRIND:  integer column in the data, which contains the covariable index
  8
$ PEDIGREE:  am+p
$ DATAFILE:  /koel/testi/data/mTab.dat
$ VAR:  8 1 f
$ MISSVA:  0.0
$ SCALE:  n
$ PEDFILE:  /koel/testi/data/blk.ped
$ PARFILE:  legendrepol.par
$ TMPDIR:
$ RANSOLFILE:  solution files for the random effects: htm n-ga animal
  y n y
$ SOLUNF:  unformatted solution file
  y
$ PRECON:  d d b d m 1 1 2 2
$ PARALLEL:  1
$ COMMONBLOCKS:  0
```
Miscellaneous useful options

- ŷ’s & residuals
- Yield deviations
- Individual daughter deviations
- Simulated observations and solutions
- Multiple-trait deregression

- Inbreeding coefficients in A^{-1}
- Random phantom parent groups
- Heterogeneous residual (co)variance matrices
- HV adjustment when observations have different measurement errors
- Restricted multiplicative model to account for HV

Estimation of Direct Genomic Values

SNP-BLUP

\[y = \mu + \beta_1 g_1 + \beta_2 g_2 + \ldots + \beta_n g_n + e \]

- Modeling of marker effects
 - fixed
 - or random
- For random marker effects
 - either common variance
 - or individual variance for each marker

G-BLUP

VanRaden (2008. J. Dairy Sci. 91:)

\[y = 1_n \mu + Z u + e, \]

\[u \sim N(0, G \sigma_g^2), \text{ where } G = ZZ^T \]

- Simple G-BLUP
- G-BLUP with polygenic effect
- G inverse has to be provided
 - Different alternatives for setting up \(G\)
Estimation of Genomic Enhanced EBV (GEBV)

Genomic selection project 2009-2013

Single-step GBLUP

- Implemented as classical BLUP model where H^{-1} is accommodate by reading C_{GA} from an external file

 \[C_{GA} = G_w^{-1} - A_{11}^{-1}, \text{where } G_w = wtG_k + (1 - w)A_{11} \]

- Implemented without setting up G^{-1}

 modified approach based on an idea by Legarra and Ducrocq (2010, J. Dairy Sci. 95:)

- Future implementations avoiding matrix inversions are under consideration

Comparison of Some Equivalent Equations to Solve Single-Step GBLUP.
Strandén & Mäntysaari, 2014, WCGALP
Useful accessories

- **abc_MiX**
 Software to fit BayesA, BayesB and other Bayesian genomic models

- **HGinv**
 Software to set up and invert genomic relationship matrices

- **RelaX2**
 Software for pedigree manipulation
 - Pruning
 - Inbreeding coefficients
 - Genetic contributions
 - etc.

git repository
Software version control system
- MiX99 code consists of almost 100,000 lines
- Administration of MiX99 software
 - Master branch
 - Develop branches
 - Feature branches
 - Release branch
- Simultaneous programming work by MiX99 team members
New needs … new solutions…

Currently, most effort is on genomic prediction, but not only:

• Implementation of **effective record contributions** into **ApaX** for the need of **bivariate blending GBLUP**…

• Single-step without matrix inversion…

• Genomic prediction for admixed populations …

• Improved pre-conditioner matrices …

• **MC-AI-REML**…

Comparison of Breeding Values from Single-Step and Bivariate Blending Methods. Taskinen et al. 2014. WCGALP

... and more and more MiX99 code

Call Csol
 & ! Calculate C*sol
Psol, Csolut, Lsol, & ! and rhs
Presidual, Cresidual, Lresidual, &
0, TraitPattern, buffer4, buffer4i, buffer1, buffer2, Yc, &
Phelpv, Chelpv, Lhelpv

endif ! if (SolinFile)
 ! call MiX99phdX('iodpcgHV: Going Distribute', my_id)

! Calculate first (!) residual, then distribute help-vector!
do i=Eq_base+1,Eq_high
 Presidual(i)=Phelpv(i)-Presidual(i)
endo
do i=CommonLow,neq
 Cresidual(i)=Chelpv(i)-Cresidual(i)
endo
do i=1,Nindex
 Lresidual(i)=Lhelpv(i)-Lresidual(i)
endo

open(77,file=HVprogress,form='formatted',position='append')
write (77,*) ' distribute rhs ... '
close(77)
!
distribute the helpv, ie, the right hand side
Call Distribute(Phelpv, Chelpv, Lhelpv)

open(77,file=HVprogress,form='formatted',position='append')
write (77,*) ' distribute residual ... '
close(77)
!
call MiX99phdX('iodpcgHV: Going Distribute', my_id)
!
distribute the residual
Call Distribute(Presidual, Cresidual, Lresidual)
!
call MiX99phdX('iodpcg: Going ListZero', my_id)
Call ListZero(Psearch_d, Csearch_d, Lsearch_d)

open(77,file=HVprogress,form='formatted',position='append')
write (77,*) ' calculate preconditioner * rhs ... '
close(77)

THANK YOU