

Nordic silage production development by remote sensing, crop growth models and artificial intelligence in CyberGrass I project

Markku Niskanen¹, Roope Näsi², Eija Honkavaara², Julien Morel³, **David Parsons³**, Sanna Bergqvist³, Jere Kaivosoja¹, Panu Korhonen¹, **Oiva Niemeläinen¹**, Terhi Korpi⁴, Juho Kotala⁴, Benjamin Bollhöner⁵

¹⁾Natural Resources Institute Finland (Luke), ²⁾Finnish Geospatial Research Institute, ³⁾Swedish University of Agricultural Sciences, ⁴⁾ProAgria Etelä-Pohjanmaa, ⁵⁾ Norrbotten Västerbotten Hushållningssällskapet

NJF Congress 27-29.9.2022 Selfoss, Iceland

26.9.2022

Contents of presentation: Background info and work packages

WP 1. Test sites , satellite and drone measurements and estimations

WP 2. Developing prediction models for yield quantity and quality estimation

WP 3. Decision Support System for grass silage sward management

WP 4. Dissemination

(WP 5. Project Management)

Luke © LUONNONVARAKESKUS

The provinces in Interreg Botnia Atlantica region:

In Sweden the areas in BA are:

Västerbottens län (Övre Norrland)

Västernorrlands län (Mellersta Norrland)

Gävleborgs län (Norra Mellansverige)

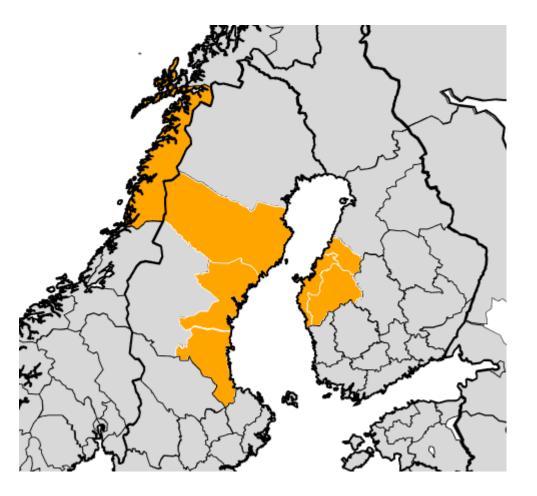
All areas are in NORRA SVERIGE.

In Finland:

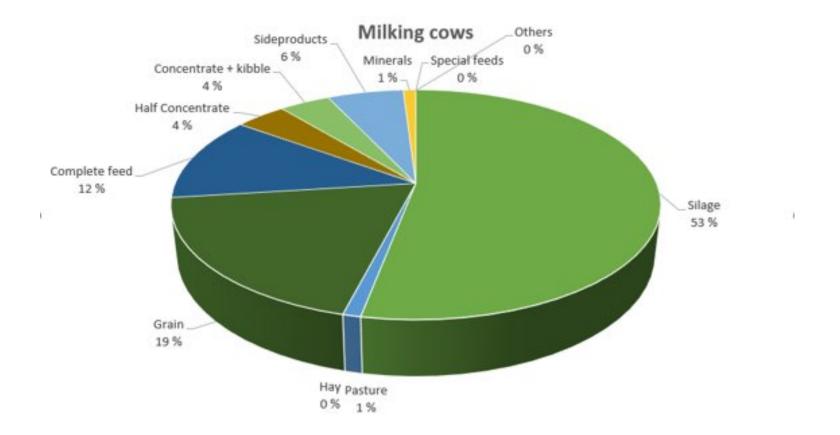
Pohjanmaa (Ostrobotnia)

Etelä-Pohjanmaa (South Ostrobothnia)

Keski-Pohjanmaa (Middle Ostrobothnia



Silage is the most important constituent of ruminant diets in the study region



Problem and how to solve it

The silage swards is growing fast and the quality is changing rapidly, especially in the spring

Assessing the quantity and quality of the yield per hectare is difficult because

- the dry matter content has a large effect on the dry matter yield

- crop sampling is laborious and sample processing is laborious

The quantity and quality of the silage yield is of great importance to the economy of livestock farms

->there is need to develop methods for estimating the yield from growing grass stands. Remote sensing and growth modeling make it possible.

Luke © LUONNONVARAKESKUS

In CyberGrass I we have done sampling and drone imaging and satellite follow up on pilot farms and experiments in 2021 and in 2022 and developed grass growth modelling. Collaboration with pilot farmers, Boreal Plant Breeding and ValioArtturi is highly appreciated by the project.

Sampling in Sweden

2021

- 2 fields
- Harvest 1, two sample dates
- Harvest 2, three sample dates

rctic Circle

• Harvest 3, one sample date

2022

- 3 fields
- Harvest 1, three sample dates
- Harvest 2, two sample dates
- Harvest 3, four sample dates

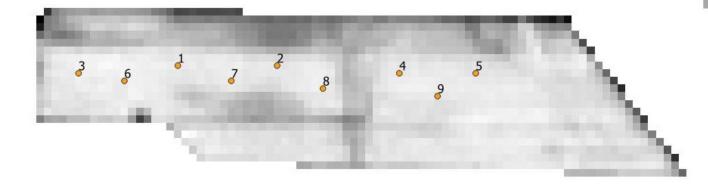
Choosing pixels for sampling

NDVI using satellite images

• 10x10 m

Two pixels sampled per field and sampling date

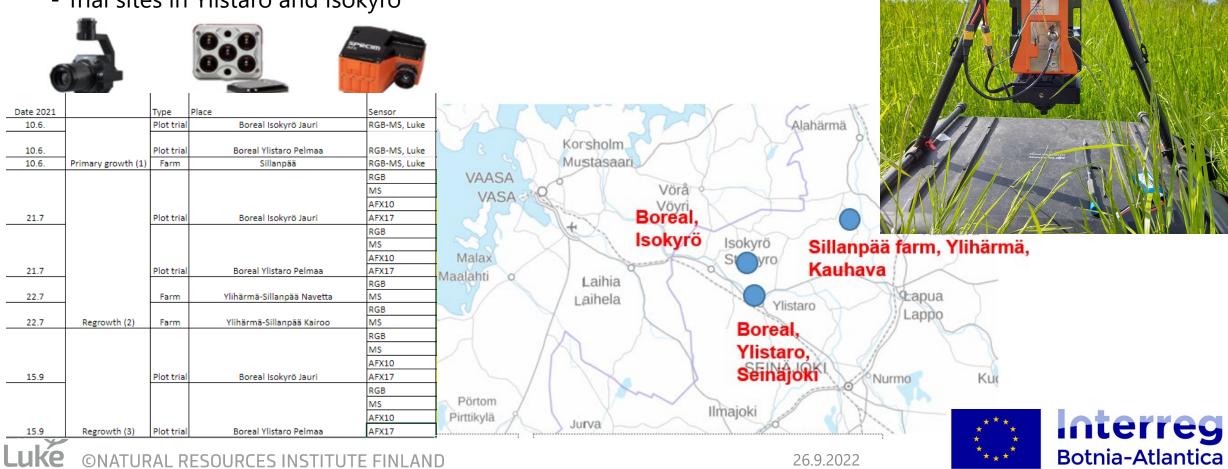
• Three quadrats per pixel



Drone data collection 2021 by FGI

Drone data collection from South Ostrobothnia trials for CyberGrass I

- 14 flights, RGB, Multispectral, Hyperspectral (AFX10, AFX17)
- 1 farm
- Trial sites in Ylistaro and Isokyrö



Euroopan aluekehitysrahasto

EUROOPAN UNIONI

Drone data collection 2022 by FGI

- 44 flights

Luke

- Drones were flying 168km in the project
- -19 datasets from 8 different farms (RGB, MS)

- Full time series from Isokyrö and Ylistaro trials (RGB, MS, HS)

e 2022								Koskenoja Jalasjärvi, 164	RGB
			Koskenoja Jalasjärvi, 164		18.7.2022		Farm		MS
6.6		Farm		MS				Koskenoja Jalasjärvi, 164	RGB
			Koskenoja Jalasjärvi, 164		18.7.2022		Farm		MS
6.6		Farm		MS				Heikkilä, Ilmajoki, 14507	RGB
		-	Savunen, Ilmajoki, 1450		18.7.2022		Farm		MS
6.6	{	Farm		MS				Sillanpää, Ylihärmä, 971	RGB
			Heikkilä, Ilmajoki, 14507		19.7.2022		Farm		MS
6.6	-	Farm		MS				Sillanpää, Ylihärmä, 004	RGB
		-	Aspila, Alahärmä, '00408		19.7.2022		Farm		MS
7.6	4	Farm		MS				Aspila, Alahärmä, '00408	RGB
7.6		Farm	Sillanpää, Ylihärmä, 971	MS	19.7.2022		Farm		MS
7.0	{	Farm	Sillanpää, Ylihärmä, 004					Kotala, Lapua, 40825339	RGB
7.6		5 mm	Silianpaa, Yiinarma, 004	MS	19.7.2022		Farm		MS
7.6	{	Farm	Kotala, Lapua, 40825339					Savunen, Ilmajoki, 1450	RGB
7.6		Farm	Notala, Lapua, 40825335	MS	20.7.2022		Farm		MS
7.0	1	Failin	Aspila, Alahärmä, '00408	<u> </u>				Boreal Isokyrö Jauri	RGB
10.6.		Farm	Aspira, Aranarina, Obvo	MS					MS
10.0.	1	Patiti	Patana, Veteli	RGB					AFX10
10.6		Farm	Patana, veten	MS	25.7.2022		Plot trial		AFX17
10.0	1	Parin	Isohanni, Kannus	RGB				Boreal Ylistaro Pelmaa	RGB
10.6		Farm	isonanni, kannus	MS					MS
10.0	1	Parin		RGB					AFX10
				MS	25.7.2022	Regrowth (2)	Plot trial		AFX17
				AFX10		× .7		Boreal Isokyrö Jauri	RGB
16.6		Plot trial	Boreal Isokyrö Jauri	AFX17					MS
2.00 tr	1			RGB	7.9.2022		Plot trial		AFX10
				MS				Boreal Ylistaro Pelmaa	RGB
				AFX10					MS
16.6	Deimony grouph (1)	Dist is a	Boreal Ylistaro Pelmaa		7.9.2022	Regrowth (3)	Plot trial		AFX10

©NATURAL RESOURCES INSTITUTE FINLAND

Sampling data prior to 1st cut and prior to 2nd cut in Finland. In total 11 fields in first cut and six fields for 2nd cut.

1st cut (6-10.6.2022)	Mean	Min	Мах		
Dry matter yield (kg DM/ha)	3176	1680	3945		
Protein (g/kg DM)	193	130	223		
D-value	741	722	758		
Fresh Yield (kg/ha)	19140	9440	25200		
2nd cut (18-19.7.2022)	Mean	Min	Мах		
Dry matter yield (kg DM/ha)	3843	2561	5443		
Protein (g/kg DM)	178	123	207		
D-value	695	641	731		
Fresh Yield (kg/ha)	18170	10900	24520		

Four sub sample quadrats on each field each (0,5 m by 0,5 m with area 0,25 m²). Pooled sample 1 m². On some fields big difference in sub sample yields observed.

Grass stand yield and quality estimation by drone data and machine learning - concept

Methods

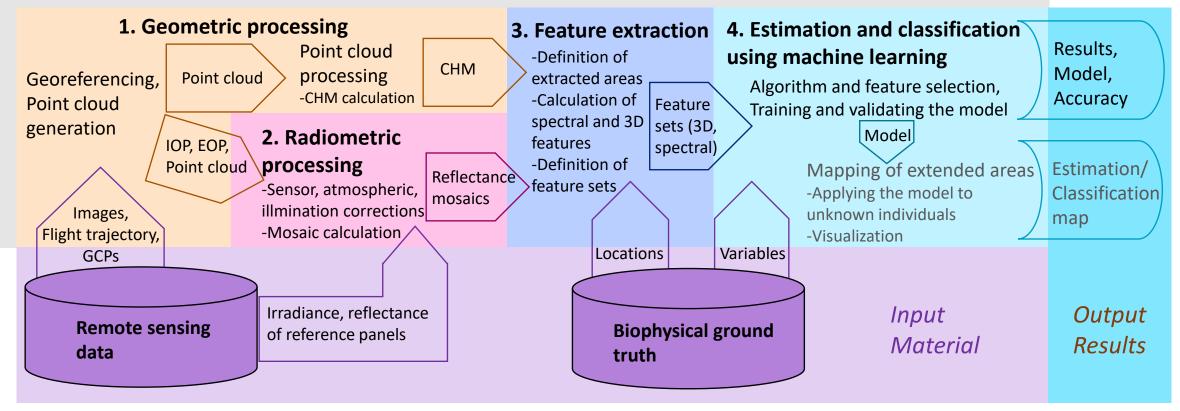


Figure: Näsi, R. (2021). Drone-based spectral and 3D remote sensing applications for forestry and agriculture. Doctoral Dissertation, Aalto University, School of Engineering. http://urn.fi/URN:ISBN:978-952-64-0613-8

Estimating grass parameters in the project results of five cases

- Cases 1 and 2
 - Experimental trials
 - Multispectral data
 - Handcraft features and machine learning
- Case 3
 - Experimental trial
 - Comparison of different data sources
 - RGB, MS, HS-VNIR, HS-SWIR, CHM
 - Handcraft features and machine learning
- Case 4
 - Experimental trial
 - Novel deep learning methods
- Case 5
 - Real farm parcels

EUROOPAN UNIONI

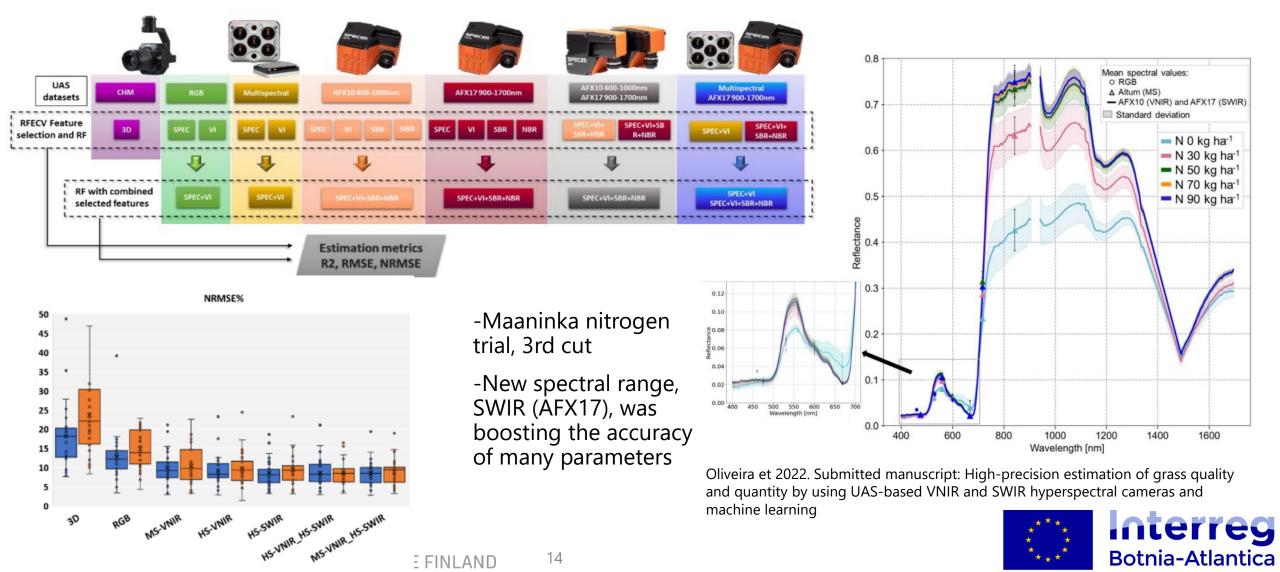
Interreg

Botnia-Atlantica

Euroopan aluekehitysrahasto

26.9.2022

Experiences of grass stand yield and quality estimation by drone data 2021 - comparison of different data sources (case 3)

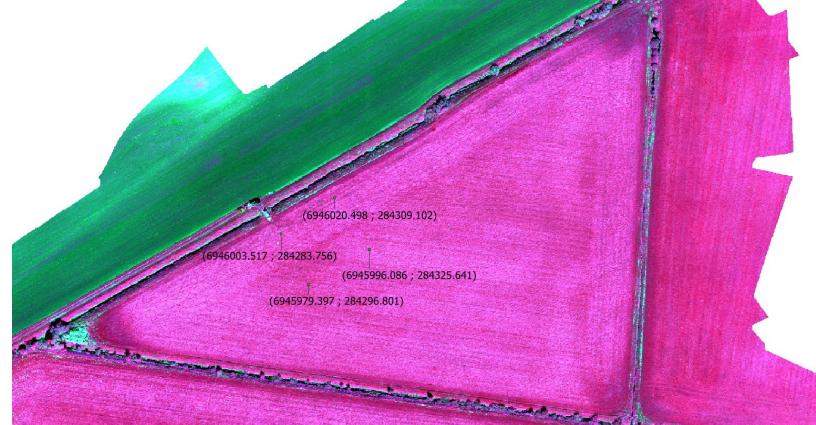


DMY FY

EUROOPAN UNIONI EURO

Euroopan aluekehitysrahasto

Estimation of fresh yield in real farm parcels (case 5A)



False-color composite image of parcel with sampling locations

EUROOPAN UNIONI EUROOPAN UNIONI EUROOPAN UNIONI

26.9.2022

Estimation of fresh yield in real farm parcels (case 5A) statistics

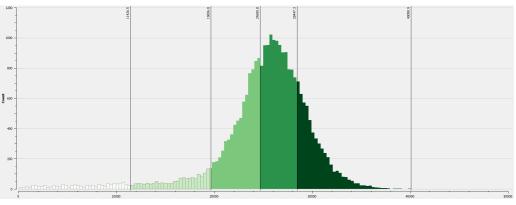
Fresh yield reference values from the topmost sample (kg/ha):

- 1. 23440
- 2. 19120
- 3. 18800
- 4. 25120

Avg. 21620

For the linear model the dark median spectra of 842 nm feature was used. The correlation between the samples was 0.936 with the used feature.

With that model we resulted an average fresh yield estimation of 25069 kg/ha for the whole field. The total fresh yield estimation for the whole field was **66.4 tkg**.



Histogram of full parcel fresh yield estimation data distribution

26.9.2022

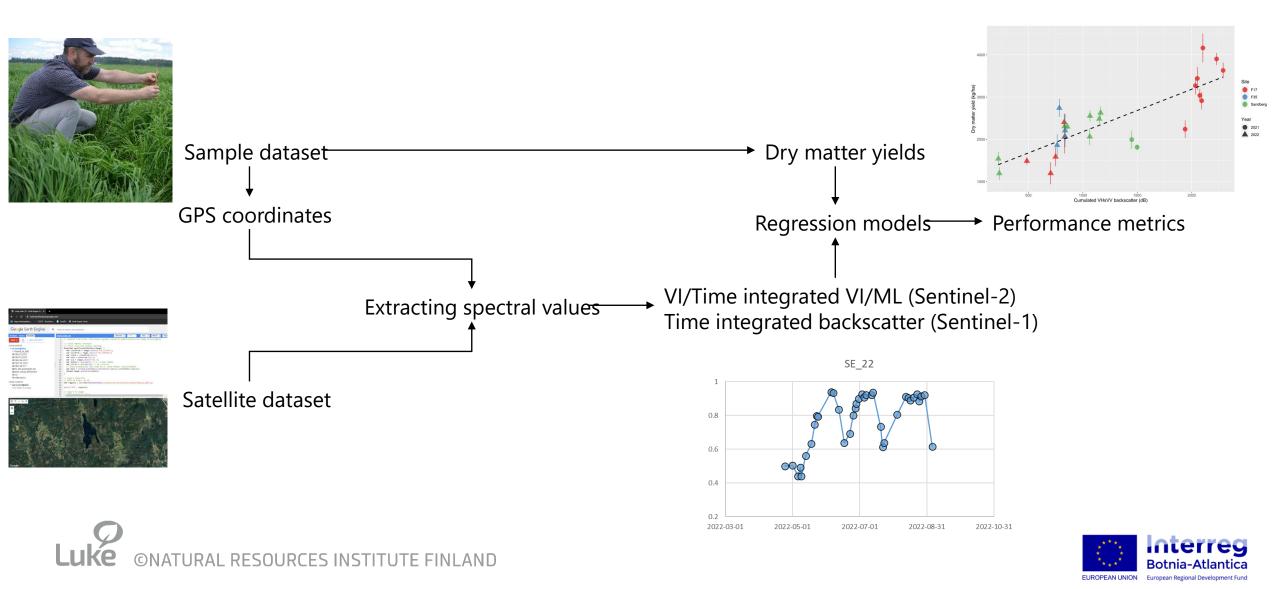
Satellites

Sentinel 1

- Active sensor (can be used at night)
- Microwaves (can see through clouds)

- Passive sensor
- Visible/NIR/SWIR spectral range
- Multispectral sensor (13 bands)

Workflow



Sentinel-2 (Random Forest)

Training dataset R²: 0.96 RMSE: 239 kg/ha 4000 -Measured dry matter yield (kg/ha) Project Country 2000 4000 Random forest predicted dry matter yield (kg/ha) - train dataset (e ©NATURAL RESOURCES INSTITUTE FINLAND

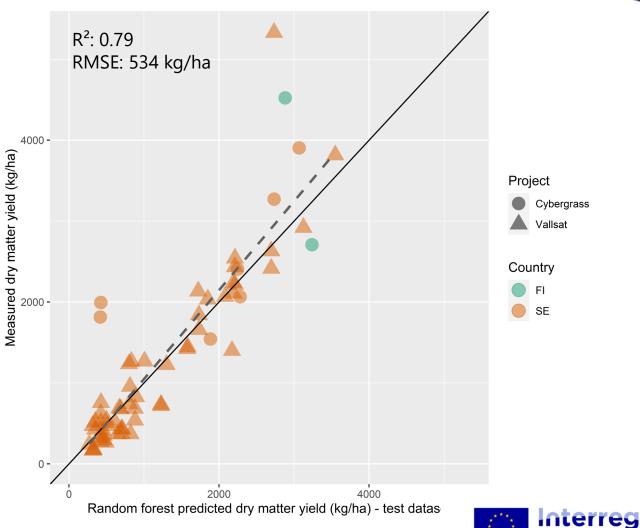
Cybergrass

Vallsat

FI

SE

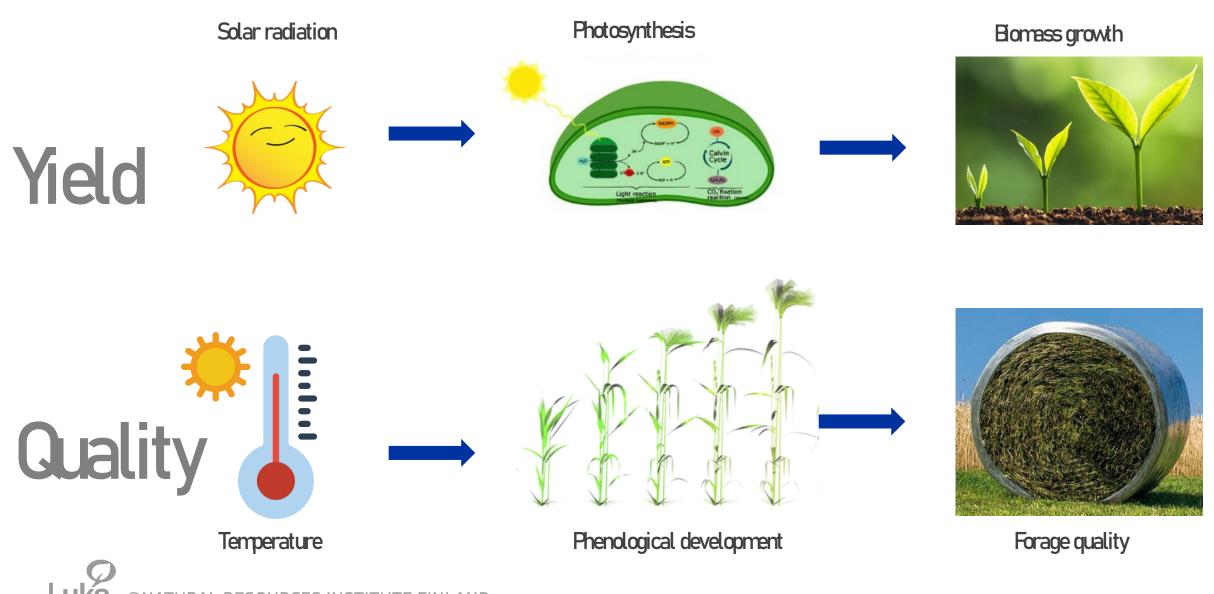
Test dataset



Botnia-Atlantica

European Regional Develo

EUROPEAN UNION



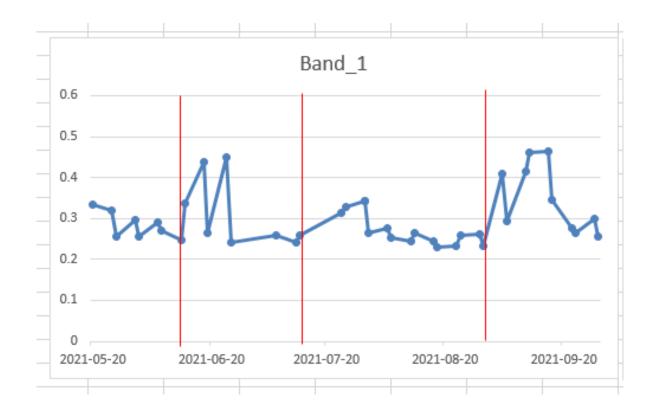
CONTURAL RESOURCES INSTITUTE FINLAND

Types of models

Empirical	Simulation				
Less mechanistic	More mechanistic				
e.g. Vallprognos, Karpe	e.g. Basgra, Stics				
Quality	Biomass, quality				
Simple	Complex				
Little information needed	Much information needed				
Period: single cut	Period: whole season				

Detecting cutting dates

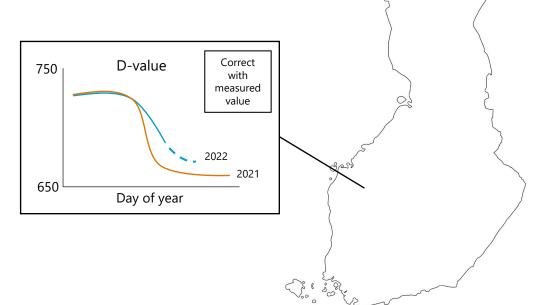
- Purpose: to develop an automated way to update mechanistic models
- Use Radar data from Sentinel 1 to detect cutting dates
- Unaffected by clouds, sensitive to biomass changes
- Amplitude of the complex correlation coefficient between two images



New version of D-value prediction model

Updates at 1st step:

- Weather data changed to gridded data (1 x 1km) with 5 day forecast
- Calculation of D-value estimates until current day and with 5 day forecast
- New UI under construction
 - Also map-based visualisation
 - Easier location selection
 - Mobile-friendlier approach
 - Will be published on Luke's website



Draft estimate of readiness of different methods to be included as part of desicion support system.

Technology readiness level, Estimated attainable quality level, spatial data quality. Costs and benefits.

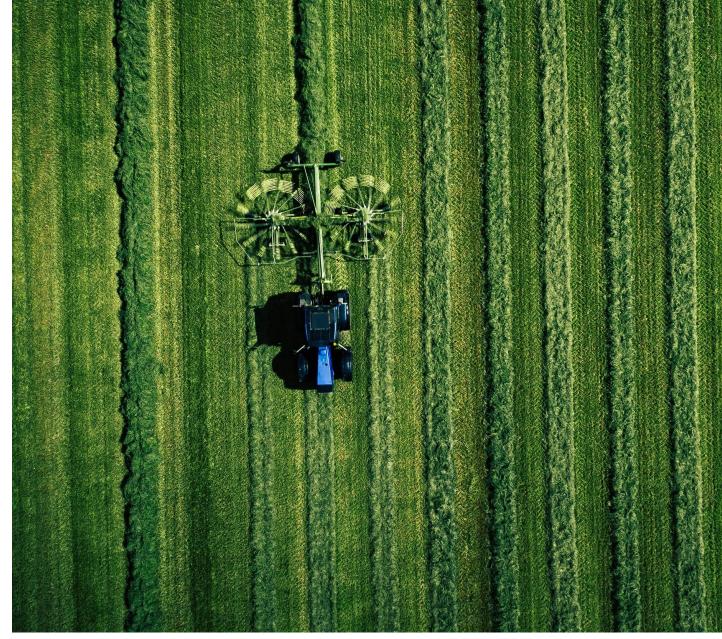
	Method	TRL	Quality	Eco. via.					
	Free satellite #	9	6	9			Free satellite	Free satellite 7	Free satellite 7 6
	Accurate satellite	7	7	6			Accurate satellite	Accurate satellite 7	Accurate satellite 7 6
	3D	4	4	3			3D	3D 6	3D 6 4
Nutrient map	Close range sampling #	4	9	6		Quality map	Close range sampling	Close range sampling 7	Close range sampling 7 9
Nutrient map	RGB	8	7	7		Quality map	RGB	RGB 7	RGB 7 4
	Multispectral	7	8	6			Multispectral	Multispectral 7	Multispectral 7 7
	Sensor integration #	6	9	6			Sensor integration	Sensor integration 6	Sensor integration 6 9
	Hyperspectral	6	9	5			Hyperspectral	Hyperspectral 7	Hyperspectral 7 9
	Free satellite #	9	6	9			Free satellite	Free satellite 6	Free satellite 6 6
	Accurate satellite	9	7	6			Accurate satellite	Accurate satellite 6	Accurate satellite 6 7
	3D	6	7	6			3D #	3D # 6	3D # 6 8
•	Close range sampling	5	5	2	Quantity map	Close range sampling	Close range sampling 5	Close range sampling 5 8	
Anomaly map	RGB	9	6	7		RGB	RGB 8	RGB 8 6	
	Multispectral	9	8	4		Multispectral	Multispectral 7	Multispectral 7 7	
	Sensor integration	6	8	3			Sensor integration #	Sensor integration # 6	Sensor integration # 6 9
	Hyperspectral	7	8	3			Hyperspectral	Hyperspectral 6	Hyperspectral 6 8
	Free satellite	7	3	7			Free satellite	Free satellite 3	Free satellite 3 1
	Accurate satellite	7	4	5			Accurate satellite	Accurate satellite 3	Accurate satellite 3 2
	3D	6	7	6		3D #	3D # 7	3D # 7 9	
Weed map	Close range sampling	6	5	6		Stack volume	Close range sampling	Close range sampling 3	Close range sampling 3 4
weed map	RGB	8	4	5		Stack volume	RGB		
	Multispectral	6	7	5			Multispectral	Multispectral 3	Multispectral 3 3
	Sensor integration	6	9	5			Sensor integration	Sensor integration 5	Sensor integration 5 9
	Hyperspectral	5	8	2			Hyperspectral	Hyperspectral 3	Hyperspectral 3 2

IKE ©NATURAL RESOURCES INSTITUTE FINLAND

(by Jere Kaivosoja)

Future research in drone imaging

- Taking advantage of different data sources
 - Remote sensing data •
 - Growth models, weather etc. •
- Development towards more • real-time or near-real-time solutions



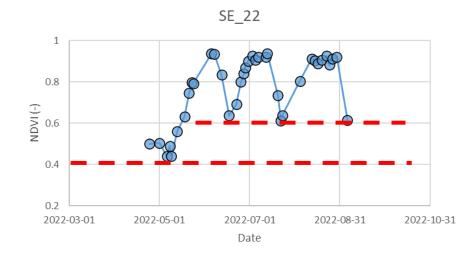
26.9.2022

EUROOPAN UNIONI

Future research in satellites

- Quadrats- vs strips-estimated dry matter yield
- Refining hypotheses for time integration of signal (when to start the integration, baseline value, etc.)
- Sentinel-1: effect of the angle of acquisition?
- Combining Sentinel-1 and Sentinel-2
- More data!

GEOSPATIAL RESEARCH INSTITUTE FGI



Future research in prediction models

- Integration of data for correcting the estimates (to take into account regional variability due to factors not included in model)
- Inclusion of model-based yield estimates for the 2nd and 3rd cut
- More comprehensive use of weather data for assessing "optimal harvest time"
- Improved flexibility and adaptability of the model to customers' systems

Photo: agriland.ie

Thank you!

Collaborating farmers, ValioArtturi and Boreal Plant Breeding are warmly acknowledged for fruitful collaboration.

The project is funded by the European regional development fund with Region Västerbotten and Pohjanmaan liitto

