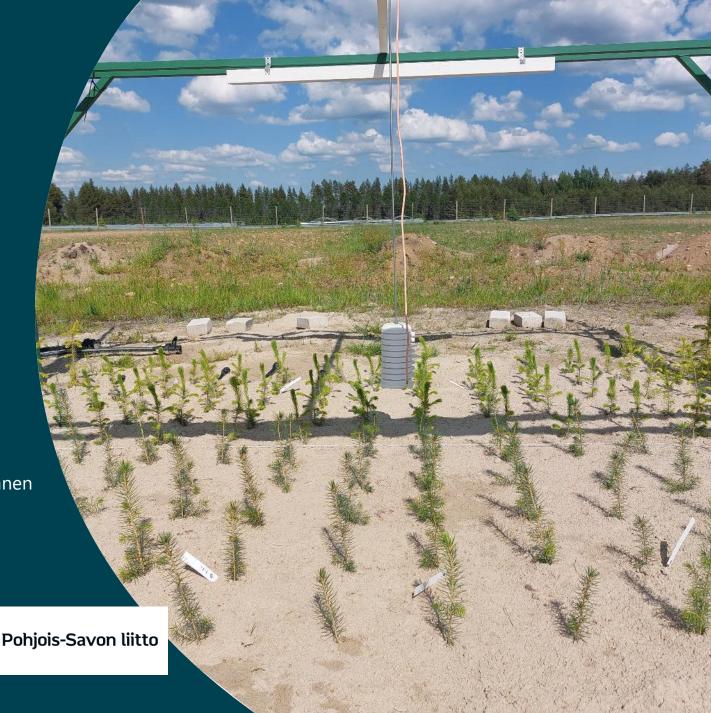
Norway spruce seedlings grown in peat substitutes – field success under climate change conditions

NordGen Forest Conference September 18 – 19, 2024 Rovaniemi, Finland


Minna Kivimäenpää

Hanna Ruhanen, Johanna Riikonen, Jaana Luoranen, Katri Himanen

Natural Resources Institute Finland (Luke), Suonenjoki

Background

- > 150 million container seedlings produced / year in Spahgnum peat in Finland
- Decrease in use of for energy purposes → impact on availability of peat as a growing medium
- Need for peat substitutes that produce
 - High quality,
 - High field success,
 - Climate-tolerant seedlings

Growing media tested

Growing media*

Peat

Moss (Spaghnum)

Moss + N (slow release)

Peat: wood fiber 75:25

Moss: wood fiber 50:50

Moss: wood fiber 50:50 + N

Moss: cow manure digestate 75:25

Wood fiber: cow manure digestate 75:25

* Both fertilized and limed ready-to-use products and self-made mixes

Growing conditions

Sowing: 2.-4.5.2023

Species: Norway spruce (Picea abies)

Seed origin: SV113 (seed orchard), seed lot EY/FIN T03-21-

0508

Tray: Plantek 81F (growing density 549 seedlings/m²)

Place: Plastic greenhouse

Fertigation based on visual monitoring and EC measurements

Number of seedlings: 35 000

Overwintering: freezer storage and outdoors under natural snow cover

Final growth

Peat

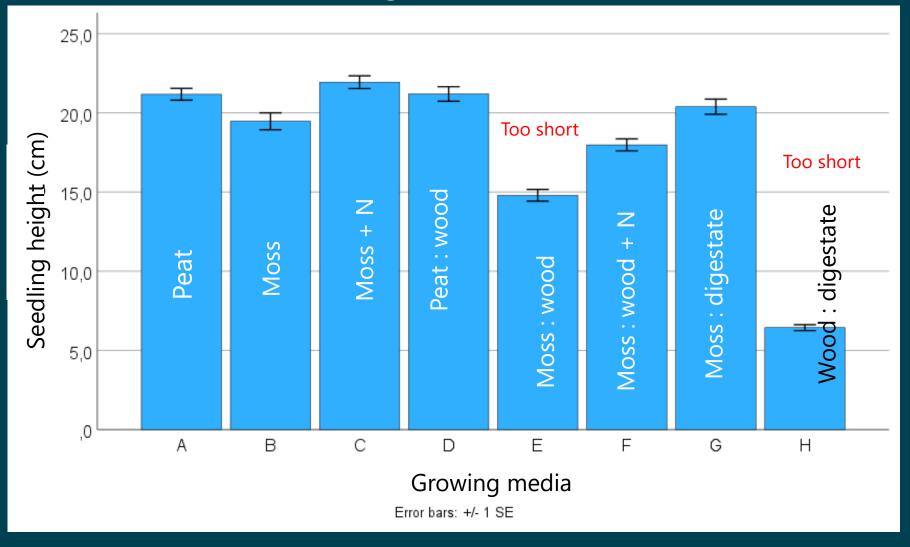
Moss

Moss + N

Peat: wood

Moss: wood

Moss : wood +N Moss: digestate


Wood : digestate

Final growth

Rejection basis, growing media can affect

Growing media	Yield (%)	Germination (%)	Too short (%)	Color or structure (%)	Root plug integrity (%)	Other (%)
Peat	82	6	2	7	1	2
Moss	78	4	3	8	3	4
Moss + N	81	7	2	5	1	4
Peat : wood fiber	81	6	3	6	4	0
Moss: wood fiber + N	79	6	6*	5	1	3
Moss : cow manure digestate 75:25	82	7	4*	4	1	6
* Difference to peat (P<0.05)						

Growing media did not affect yield

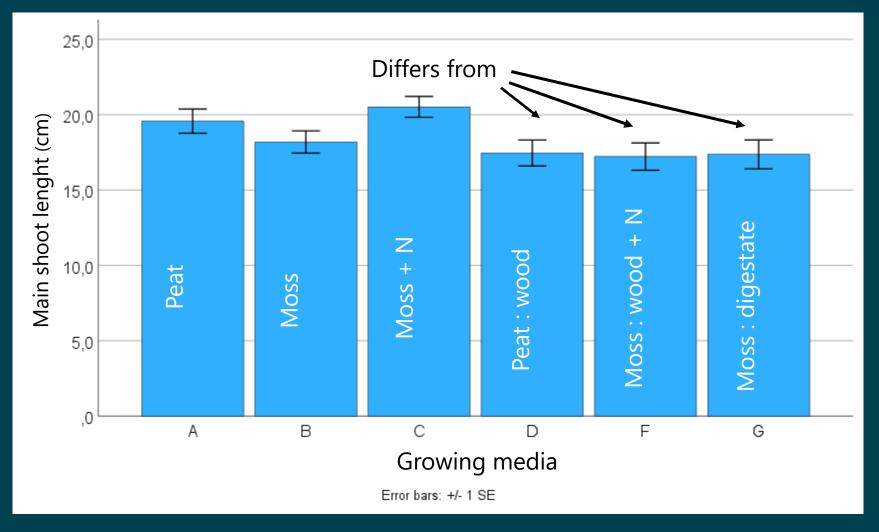
Field success

Planting in the Stress Test Field in Luke Suonenjoki on 4 June 2024

24 study plots

3 levels of warming (ambient, target +2 °C, target +5 °C), canopy and soil warming

2 levels of soil moisture: ambient precipitation, additional watering (to avoid drought)


Precipitation in summer 2024 lower than long-term average

Growth: Main shoot lenght on 4 Sept 2024

No warming and watering effects on shoot growth

Climate tolerance

Chlorophyll fluorescence (Fv/Fm)

- Lower in non-watered seedlings, indicating drought stress (July, August)
- Seedlings from different growing media responded in the same way – similar drought stress resistance

Insect damage

- Some interactions between watering treatments and growing media (July)
- In general, the seedlings look good (September)

Conclusions

- Five of seven peat substitutes produced field-ready Norway spruce seedlings
- All thrived in the field under climate change conditions
- Response to drought stress was similar
- Differences between growing media expected in growth and carbon storage
- Caution on insect damage?
- Monitoring required over winter and longer term

Thank you!

https://www.luke.fi/en/projects/ilmastotaimet

Collaborators:

https://www.luke.fi/en/projects/udkat

Juha Heiskanen and Luke infrastructure staff at Suonenjoki: Mikko Hentunen, Raimo Jaatinen, Suvi Jalokoski, Liisa Kauppinen, Sirpa Kolehmainen, Sirpa Mäkinen, Juhani Salonen, Aleksi Sirkka, Saija Stranius, Peetu Tolonen, Martti Udd.

