
MiX99
Solving Large Mixed Model Equations

Release IX/2025

TECHNICAL REFERENCE GUIDE
FOR

MiX99 SOLVER

Last update: Sept 2025
©Copyright 2025

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

Preface
The development of MiX99 was initiated in the late 1990’s to allow more sophisticated
models for estimating breeding values in dairy cattle. At that time, the focus was on
computational efficiency and the target users were experts in dairy genetic evaluations.
Therefore, the primary application of this software was in solving large-scale genetic
and genomic evaluations for national and international dairy evaluations. However, over
the years we have developed the software into a general tool where many models can
be used. As a result, MiX99 is used in genetic evaluation of many livestock species,
plant breeding and research, in addition to cattle.

About this manual
We explain the command language interface for MiX99, called CLIM, and provide all
the basic information required to perform a range of analyses with MiX99. In addition,
two supplementary manuals are available: the "Technical Reference Guide for MiX99
Preprocessor" and the "Technical Reference Guide for MiX99 Solver". These guides
give additional support for very specific models and for the approximation of reliabilities.

Disclaimer
The MiX99 software is owned by Natural Resources Institute Finland (Luke). When
using this program you agree with the following terms. You are not allowed to distribute,
copy, give or transfer MiX99, under the same or any other name. Any decisions based
on the information provided by MiX99 are made at your own responsibility and risk.
Only limited technical support can be provided, but vital questions on its use can be
directed to the authors (mix99@luke.fi). Please report any bugs to the authors. MiX99
can be cited by (MiX99 Development Team, 2025) and (Pitkänen et al., 2022). If you
would like to use MiX99, please contact Natural Resources Institute Finland1.

MiX99 new (NEW) and development (DEV) features
NEWNew MiX99 features are indicated in the documentation by a colored vertical bar and

note “NEW” on the right margin.

DEVSome of the newest MiX99 features currently in development are not yet available in
the official MiX99 release. These new MiX99 development features are indicated in the
documentation by a colored vertical bar and note “DEV” on the right margin.

Authors
Martin Lidauer, Matti Taskinen, Kaarina Matilainen, Esa Mäntysaari, Timo Pitkänen,
Ismo Strandén
Natural Resources Institute Finland (Luke),
FI-31600 Jokioinen, Finland
http://www.luke.fi/mix99

1MiX99 Development Team, Natural Resources Institute Finland (Luke), FI-31600 Jokioinen, Finland.

ii

mailto:mix99@luke.fi
http://www.luke.fi/mix99

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

Contents

1 Introduction . 1
2 Computing Methods . 2

2.1 Preconditioned conjugate gradient method 2
2.2 Iteration on data technique . 2
2.3 Data work file reduction . 2
2.4 Equation family blocks . 3

3 How to run MiX99 solver programs . 4
3.1 Computing environment . 4
3.2 MiX99 solver programs . 4
3.3 Multi-threaded MiX99 solvers . 4
3.4 Running the solver . 5

4 The MiX99 solver option file . 7
4.1 Solver option lines . 7
4.2 Command line options . 17
4.3 Sparse regression matrix (srm) 18
4.4 No residual covariances (noc) . 18
4.5 Second level preconditioner (sp) 19
4.6 Determining convergence . 19

4.6.1 Choosing a suitable convergence criterion 20
4.6.2 Effect of preconditioning on convergence 21

4.7 External STOP file: stopping iteration 22
4.8 External PEEK file: intermediate solutions during iteration 22
4.9 External ITER file: changing parameters during iteration 23

5 Output files of the MiX99 solvers . 25
5.1 Standard output . 25
5.2 Successful execution of MiX99 solver 26
5.3 Solution files . 28

5.3.1 Formatted solution files 28
5.3.2 Unformatted solution files 28

5.4 Files for model validation purposes 29
6 Reliabilities . 30

6.1 Approximate reliabilities using ApaX 30
6.1.1 Approximate reliabilities for single-step 31
6.1.2 Differences of reliability calculation and breeding value

estimation . 31
6.1.3 ApaX instruction file . 33
6.1.4 Guidelines for determining blocking and JFilter 36
6.1.5 ApaX Output files . 37

iii

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

6.1.6 Example of ApaX instruction file 38
6.2 Exact reliabilities using exa99 . 40

6.2.1 Option file for exa99 . 40
6.2.2 Exa99 output files . 42

6.3 Reversed reliability approximation 43
6.3.1 Single-trait Reversed reliability approximation (Accur-

Type 20) . 43
6.3.2 Multi-trait Reversed reliability approximation (AccurType

40) . 45
7 Daughter Yield Deviations . 47

7.1 Calculation of daughter yield deviations 47
7.1.1 Pedigree file . 47
7.1.2 MiX99 instruction file 47
7.1.3 MiX99 solver option file 48

7.2 Solution files for daughter yield deviations 48
7.3 Example . 48

8 Non-linear models . 51
8.1 Threshold-model . 51

8.1.1 Instruction file for mix99i 51
8.1.2 Stopping criterion file for mix99s 51
8.1.3 Solution files . 52
8.1.4 Example . 52

8.2 Gompertz-model . 52
8.2.1 Instruction file for mix99i 52
8.2.2 Stopping criterion file for mix99s 53
8.2.3 Solution files . 53
8.2.4 Example . 53

9 Estimation of variance components . 54
9.1 Running MC EM REML . 54
9.2 File with starting values of (co)variance components 55
9.3 MiX99 instruction file . 55
9.4 MiX99 solver option file . 56

9.4.1 Number of data samples 56
9.4.2 Determining convergence of REML parameter estimates 56
9.4.3 Keeping certain variance components fixed 57
9.4.4 MC EM REML for MACE 57

9.5 Standard errors for REML parameter estimates 57
9.6 Solution files for variance components 59
9.7 Example . 60

10 Accounting for heterogeneous variance 65
10.1 Computation environment . 65
10.2 Models for the heterogeneity of variances 65

10.2.1 Currently supported variance models by MiX99 65
10.3 Input data for the variance model 68

10.3.1 Input data for mix99hv 68
10.3.2 Instruction file for mix99hv 68
10.3.3 Output files from mix99hv 70

10.4 Instruction file for the variance model 71

iv

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

10.5 Variance components for the variance model 74
10.5.1 Files with information for the variance component esti-

mation . 74
10.6 Standardization of the multiplicative adjustment factors 75

10.6.1 Files for the standardization procedure 75
10.6.2 Standardization process 75
10.6.3 Multiple residual variance-covariance matrices 76

10.7 Running a model with heterogeneous variance 76
10.7.1 Implementation on shared memory platforms 77

10.8 Workflow and needed files for running multiplicative mixed model 77
10.9 Example . 80
10.10 Output files . 82

10.10.1 Mi.log and Ms.log . 82
10.10.2 HVd.log . 83
10.10.3 CYC.log . 83
10.10.4 Lambda.log . 84

11 Acknowledgement . 85
12 References . 85
Index . 88

v

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

1 Introduction
Dairy cattle breeders around the world have moved to so called test-day models from
plain animal models for 305d data. Usually this model upgrade leads to a manifold
increase in the computating time. This is because test-day models have more effects
than traditional models based on 305d data, and also because number of records
increase about ten times. In a national evaluation, number of test-day records and
number of unknowns in the mixed model equations (MME) are easily more than 100
million. In the last decade, genomic information has lead to vast increase in dense
marker data. Thus, sparse data by animal model is combined with dense genomic data.
Consequently, computing times have increased.

Computational techniques and algorithms that were found useful for solving animal
models may take weeks to obtain solution to large random regression test day or ge-
nomic data model MME. Consequently, faster solving algorithms have been developed.
Strandén and Lidauer (1999) and Lidauer et al. (1999) advocated the use of precondi-
tioned conjugate gradient (PCG) method. Lidauer and Strandén (1998) and Strandén
(1999) showed the usefulness of parallel computing. These techniques have been
found to reduce computing time considerably. Genomic data has lead to development
of new techniques for inlcuding the rapid increase of genomic data into the models.

MiX99 development work has focused on incorporation of new techniques into an
iteration on data BLUP-program (Lidauer and Strandén, 1999). We have also extended
the software with programs for different needs: a general program that approximate
reliabilities of bulls’ estimated breeding values (EBV), as required by the Interbull; a
general program that calculates exact reliabilities of EBVs via inversion of the coefficient
matrix; and programs, which are required when accounting for heterogeneous variance.
Although the programs have been designed primarily for genetic evaluation of dairy
cattle, the programs can and are used for other species that use other types of statistical
models.

The MiX99 package consists of two main programs: pre-processor and solver. The
pre-processor program mix99i reads model instructions, examines input data, and
computes data sets for the solver program mix99s, which solves the MME by iteration
on data. The MME can also be solved by the program mix99p, which is designed to
use several CPUs in parallel. In addition, the pre-processed data can be analyzed with
additional programs (apax99, apax99p and exa99) to compute accuracies of the
breeding values. For giving instructions to mix99i please see the manuals Command
Language Interface for MiX99 and Technical reference guide for MiX99 pre-processor .
In this reference guide we describe the solver options and instructions for mix99s,
mix99p, apax99, apax99p, and exa99.

1

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

2 Computing Methods
2.1 Preconditioned conjugate gradient method
The method of conjugate gradient (CG) is an iterative method to solve a linear system
Cs = r. It is based on a geometric approach (Shewchuk, 1994). In breeding value
estimation, the C matrix corresponds to the coefficient matrix of mixed model equations
(MME), the s vector contains the solutions, and the r vector is the right-hand side of
MME.

Preconditioned conjugate gradient method (PCG) uses conjugate gradient method on
a transformed problem. Preconditioning is equivalent to solving M-1Cs = M-1r, where M
is a symmetric positive definite preconditioner matrix that approximates C. Together
with a suitable preconditioner matrix, convergence rate of the CG method is superior to
other commonly used algorithms for solving MME (Lidauer et al., 1999).

MiX99 program creates the preconditioner matrix M, which comprises of diagonal
blocks of the coefficient matrix. Implementation of the PCG algorithm using iteration
on data (IOD) technique requires keeping four vectors, of size equal to the number of
unknowns in the MME, in memory and to read the data and the preconditioner matrix
once per iteration round. The algorithm does not require any pre-set tuning parameters
like relaxation factors.

2.2 Iteration on data technique
The major computational task in PCG is the multiplication of the coefficient matrix with
a vector each round of iteration. Therefore, in IOD all data records must be read and
processed. IOD technique requires for each record a certain amount (N) of floating
point operations to calculate the product coefficient matrix times a vector corresponding
to the record. In MiX99, N increases almost linearly with increasing complexity of the
statistical model; N=2(2f+t2), where f is the number of effects in the model, and t is the
number of traits in the model.

2.3 Data work file reduction
Complex models with many effects may yield large iteration work files, which increases
disk input/output (I/O) work. Iteration work files were made smaller by a data reduction
technique. Data file reduction in MiX99 is based on the concept of avoiding redundant
information. The following strategies were considered useful when complex statistical
models were used for a typical dairy cattle data:

1) Pedigree information and observation data are stored in separate files.

2) If several effects in the model have the same class code, only one equation
identification number is stored in the iteration data file. This is possible by properly
ordering the equations. For example, all random effects on animal like additive
genetic and none-additive environment effect have the same class code.

3) All regression covariables or a part of them may be placed in a small table rather
than read from the data file. The table is accessed by an index. For example,
functions of days in milk can be put to a table and the connected covariate values
are found by days in milk index.

4) When different traits are measured at different time (e.g. different lactation),

2

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

observations of the traits may be grouped by the time component to avoid storing
large amount of dummy variables for missing information.

2.4 Equation family blocks
In MiX99, equations are ordered by equation families. An equation family block com-
prises of closely linked equations in the MME. For example, in dairy cattle fixed and
random effects that belong to the same herd (herd test-day effects, cows’ non-genetic
and genetic effects, etc.) are closely linked to each other and therefore form a block of
equations. Equations of fixed and random effects which are present in different herds,
e.g. age effect or sire effect, are combined into common blocks. The equation family
order increases data locality in the computations, which enhances computing speed,
and is essential when using parallel computing (Strandén and Lidauer, 1999). For
more information see equation family blocks in the Technical reference guide for MiX99
pre-processor .

3

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

3 How to run MiX99 solver programs
3.1 Computing environment
MiX99 is written in standard Fortran 90 and is self-contained. It is developed in
UNIX and Linux environment. The program has been tested to compile under many
UNIX and Linux Fortran 90/95 compilers as well as Windows compilers. When parallel
computing is used, a Message Passing Interface (MPI) library must be available. For the
development of the parallel processing using MPI, Open MPI (http://www.open-mpi.
org) or MPICH (http://www.mpich.org) were used.

3.2 MiX99 solver programs
Executing the MiX99 pre-processor program mix99i (see Technical reference guide
for MiX99 pre-processor) will create all necessary files for the solver programs. There is
a single process and a parallel program available for solving the MME. Both programs
use iteration on data technique and solve the MME by the PCG method:

mix99s Uses one process for solving. During the iteration process it reads the work
files Tmp4.pedi0, Tmp5.clas0, Tmp6.diab0, and Tm10.trco0 every
round of iteration. After convergence, final solutions are written to solution
files.

mix99p Uses several MPI processes in parallel for solving. Number of parallel
processes is defined in the MiX99 instruction file for mix99i. An additional
pre-processing program, named imake99 needs to be executed before run-
ning mix99p. The imake99 program makes a file called Index.bin. Dur-
ing the iteration, each process (i) reads its own work files Tmp4.pedi(i),
Tmp5.clas(i), Tmp6.diab(i), and Tm10.trco(i) every round of it-
eration. After convergence, one process writes the final solution to the
solution files.

3.3 Multi-threaded MiX99 solvers
In addition to the normal MiX99 solver executables, specially compiled multi-threaded
versions of MiX99 solvers are also included. Multi-threaded MiX99 executables
parallelize some of the calculations, especially large dense matrix computations. These
multi-threaded MiX99 executables are located in mp subdirectory of the MiX99 binary
distribution. The name of the multi-threaded MiX99 executable is the same as the
single-threaded counterpart, only the location (directory) is different.

Number of computational threads (not to be confused with number of MPI processes)
used by the multi-threaded MiX99 executable is controlled by one or more environment
variables depending on how the dense matrix libraries are compiled in the executables.
To cover most of the cases, the following environment variables need to be set:

export MKL_NUM_THREADS=10
export OPENBLAS_NUM_THREADS=10
export GOTO_NUM_THREADS=10
export BLIS_NUM_THREADS=10
export OMP_NUM_THREADS=10

Both the “single process” (mix99s) and the parallel solvers (mix99p) have the multi-
threaded version of the executable included and both multi-threaded solvers parallelize
some of the dense matrix operations using the multi-threading. The multi-threaded

4

http://www.open-mpi.org
http://www.open-mpi.org
http://www.mpich.org

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

“single process” solver spawns given number of computational threads (ten in the
example above) when calculating the multi-threaded operations.

The multi-threaded parallel MPI solver (mix99p) parallelizes calculations, thus, using
both MPI and the multi-threading. Depending on the operation, either one or all of the
MPI solver processes utilize multi-threading. This means that the overall number of
computational threads can be up to number of MPI processes times the given number
of threads, but this depends on the used model.

The multiple treads can be taken to use by the above mentioned environmental variables
or by solver command "nt". Effect of the nt command depends on the statistical model
and memory option (see 4.1 or 4.2) used:

1) no single-step model: all processes to use the same number of threads given by
the command.

2) single-step model with the low memory option "MES" is used: the same as for the
no single-step model.

3) single-step with memory options "MEL"/"MEB"/"MEM": only the master process
will use the number of threads given, all other processes use only one CPU.

The command line option is like:

mpiexec -np 4 mix99p -nt 10 -MEL -s

which uses 4 processes in MPI but 10 CPU threads for the master process. When the
solver commands are in a file, the "nt" command is on the first line in format like "nt 10".

The logic behind the differences is that option “MEL"/"MEB"/"MEM" lead to the Master
process to have an additional computational work that will benefit from multi-threading.
However, instructing all the other processes to have as many threads may lead to use
of too many threads and inefficient computations. Because this may be often the case,
the optimum number of threads in non single-step or "MES" option can be small.

3.4 Running the solver
Solving mixed model equations using MiX99 involves execution of at least two programs.
First, the pre-processing program mix99i is executed. Two alternative approach to
give the model information are available: either by providing a CLIM command file
on the command line or by giving a MiX99 instruction file to the standard input (see
Command Language Interface for MiX99; Technical reference guide for MiX99 pre-
processor). After executing the pre-processer program, the solver program mix99s
can be executed. The solver reads a solver option file from the standard input and
writes information about the iteration process to standard output.

mix99s < solver_option_file

Some of the MiX99 solver options can be specified from the command line also (see
Contents). The easiest way to execute solver is to give option -s which uses default
values in solving breeding values, and produces standard output files.

mix99s -s

Note that when ssSNPBLUP model is used, the second level preconditioner is recom-
mended to be used. The second level preconditioner affects the preconditioner for the

5

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

marker effects such that convergence is often imporved. An example:

mix99s -s -sp 100

where the second level preconditioner will use value 100. The best value depends on
the data and the convergence criterion.

When parallel computing is used, instead of executing mix99s you have to execute
imake99 and mix99p after the mix99i run has finished:

imake99
mpiexec99 -np 4 mix99p < solver_option_file

During the execution of the solver programs, mix99s and mix99p, they can be in-
structed to stop the iteration, store intermediate solutions to files, and change some of
the iteration parameters by creating external files STOP, PEEK, and ITER, respectively.

After successful completion of the solver, file OK_mix99s or OK_mix99p will be cre-
ated. The file will have the completion time. When this file is missing, the solver
was terminated due to some error. When using MiX99 through a script, please check
existence of the OK_mix99s or OK_mix99p file.

6

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

4 The MiX99 solver option file
The solvers mix99s and mix99p can be instructed with different parameters to control
memory use, the iteration process, the solving of non-linear models (threshold models,
multiplicative models for heterogeneous variance adjustment); to advise mix99s to
estimate variance components; or to give instruction to the solver programs to calculate
yield deviations, residuals, etc. The solver options must be provided by a solver option
file, which is read by the programs from standard input. The MiX99 solver option files
in the provided examples are named with the suffix .slv. However, any name can
be given. An alternative approach is to give option on the command line. However,
command line options are more limited.

NOTE: When BOTH the solver option file AND the command line options are given, only
the command line options are used by default. With command line option -i this can
be changed so that the solver option file is read AND the options from the command
line override the corresponding solver option file values.

Example of MiX99 solver option file:
RAM: RAM use and matrix operations: H=high RAM use, nt 10 = use 10 CPU threads

H nt 10
STOP: max.num.iterations, tolerance, convergence criterion, enforce

5000 1.0e-5 d f
RESID: Residuals calculation (Y,N,H)

N
VALID: Model validation

N
VAROPT: Variance options for VCE, PEV, HV: (N, E, P1, P2, P3, S, C)

N
SOLTYP: Solution file options (Y,N,A,H,D)

Y

4.1 Solver option lines
The MiX99 solver option file consists of option lines asked by the program. There can
be several option lines. The order of the option lines must be the same as given in the
following. Option lines are not obligatory. However, if one of the option lines is left away
all successive lines must be left out as well. The solver programs will use default values
in case an empty MiX99 solver option file is provided or if part of the option lines are
not specified. The solver option file can contain comment lines in the same manner as
in the MiX99 instruction file. Information specified after the character # are considered
as comments. Options specified by characters can be given either in upper case or in
low case characters.

RAM A line with at least one character,

RAM demand: X=large (mix99p only), H=high, M=medium, L=low
H

which defines the use of random access memory:

x eXtra. Like H but some extra in parallel computing (mix99p only)
h High. All required vectors are kept in memory (fastest execution

time). This option is recommended.
m Medium. Solutions are stored on the disk.
l Low. Solutions and residuals are stored on the disk.

7

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

The option m and l will reduce memory requirements by 25% and 50%,
respectively, with the penalty to increase I/O-operations. However, in case
of memory limitations, the option m and l may yield shortest execution
time.

There is an extra memory option, named x, for parallel solver (mix99p).
The option can also be enabled by using parallel solver command line
option -x. This memory option uses even more memory than option h
but can speed up the computations significantly in some cases. The extra
memory is used to access the linked list (see imake99 output) faster. Each
process will allocate a vector of size number of unknowns. Thus, when
there are 100 million unknowns and 10 processors, this will lead to an
extra memory allocation of 10× 100× 106 × 4 bytes, i.e., less than 4 giga
bytes.

Additional options than can be given after the definition of RAM use:

NO/YES checking of release information (NO/YES), YES is default.

nt n Number CPU in multi-threading is set to be n.

srm m Sparse regress matrix read to memory for matrix number m.

sp v Second level preconditioner of value v for regress matrix.

noc No residual covariances used. Assumes none were given (mix99s
only).

noQ No genetic groups for A−1
gg term, e.g., no Q′A−1

gg Q, in single-step
models having A−1

gg through the PEDIGREE option.

IOP/IM/CHM/PAR in single-step, product of A−1
gg times vector can be

performed using one of four altenative approaches. Approach IOP
uses iteration on pedigree, IM uses iteration in memory, but CHM
uses CHOLMOD and PAR uses MKL PARDISO library. Use of
memory from lowest to most: IOP, IM, CHM/PAR, where memory
need by IOP and IM is quite close but CHM/PAR use much more
RAM. Computing time from highest to lowest: IOP, IM, CHM/PAR,
where there is substantial difference between all approaches. The
CHM and PAR options can use multi-threading.

MEL in single-step, reads G−1 or T matrix from file to memory. The
MEL option uses efficient matrix multiplication during PCG iteration.
The multiplication can use multi-threading by the multi-threaded
versions of MiX99 solvers. Note that when the number of genotyped
individuals is large the matrix to read is large and consumes a lot of
RAM memory.

MEM is like option MEL but slower and uses slightly less memory, when
T matrix is used. Same as MEL when G−1.

MES does not read G−1 or T to memory, memory efficient but slow.

8

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

MEB b is like option MEL but makes the computations in blocks of size b
in SSGTBLUP. Can be faster than MEL for very large matrices.

MEA is like option MEB but the block size b is computed automatically
that leads to a block of 2 GB.

RDS instructs to use a small block size when calculating contributions
from regression design matrices. Currently implemented in mix99s
only.

RDM similar to RDS but uses medium block size and keeps SNP marker
matrices byte-packed in memory. Currently mix99s only.

RDL similar to RDM but uses large block size and keeps SNP marker
matrices byte-packed in memory. Currently mix99s only.

RDX instructs to keep regression design matrices fully in (double precision
real) memory. Currently mix99s only.

RDB b similar to RDL but uses given block size abs(b) (absolute value
of b). If b is positive, keeps SNP marker matrices byte-packed in
memory. Currently mix99s only.

RDU m similar to RDB but instructs to use given amount of memory (m)
when calculating constributions of regression design matrices. Full
regression design matrices are kept in memory if possible or at
least byte-packed SNP matrices if possible. Block size is also cal-
culated from the given memory limit. Memory size m is given as
<amount><unit> where <amount> is an integer and optional <unit>
is one of K (kilo), M (mega), G (giga, default), T (tera), and P (peta-
bytes). Example: RDU 12G . Currently mix99s only.

ω value for the ω multiplier of matrix A−1
gg . In practice, value of ω is

typically about 0.6− 0.8.

Defaults: h for high memory, YES for check release information, PAR for
MKL PARDISO library, MEL for having G−1 or T in memory, block size 1
for regression design matrices (except if all are SNP matrices: 1/5/10 for
Low/Medium/High memory options), and 1 for value of ω.

Option MEA is default for the component-wise SSGTBLUP and ssSNPBLUP
that use 1 byte marker matrix.

The following will change to use CHM, MEB, and multiplier 0.8:

H CHM MEB 1000 0.8

In practice, non-single step models ignore the memory option for G−1 and
the computations for product of A−1

gg because these matrices do not exist in
these models. However, when these matrices exist as in single-step, most
memory (option ’MEL’) and fastest multiplication approaches (option ’CHM’
or ’PAR’) gives shortest computing times when there is enough memory.
Computations can be faster by using that both of these options can use in
multi-threaded version of MiX99. Optimal number of computing threads
depends on the computing environment and amount of RAM memory.

9

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

STOP One line with three (mix99p) or four (mix99s) entries:

maxiter, tolerance, criterion (A/R/M/D), [enforce (F)]:
5000 1.0e-5 D F

The first entry is an integer number that specifies the maximum number
of iterations. Note that value larger than the number of equations (i.e.
the number of the effects) in the model is replaced automatically by this
largest allowed number of iterations. The second entry is a real value
that specifies the stopping value (i.e., tolerance) for the the convergence
criterion. The third entry is a character that specifies the convergence
criterion to which the stopping value will be applied. For example, if a
character a is specified, then the iteration process will continue until the
convergence criterion CA will reach a value smaller than the stopping
value (i.e, tolerance) that is specified on entry two. The solver programs
provide five types of convergence criteria (see point 4.6) of which four can
be chosen:

a Ca. Relative difference (residual) between right-hand and left-hand
side of the MME considering all equations of the additive genetic
effects only. If Ca is defined, a suitable stopping value could be
1.0e-4 or 1.0e-5. However, the value is model-dependent and should
be at least as small as needed to ensure that the Cd convergence
criterion reaches a value of 1.0.e-5.

r Cr . Relative difference between right-hand and left-hand side of the
MME considering all equations.

m Cm. Relative difference between preconditioned right-hand and
left-hand sides of the MME considering all equations.

d Cd . Relative difference between solutions of the last two iteration
rounds. If Cd is defined, a suitable stopping value for the majority
of analyses would be between 1.0e-4 and 1.0e-5. Note that if Cd is
chosen as the convergence criterion, the Cd criterion must be met
by two consecutive iterations.

The fourth entry is optional and is needed for the mix99s solver only.
The mix99s solver will consider the STOP option line only in case an
enforcing character f is specified for the fourth entry. Otherwise, default
values will be used.

Default values for mix99s: 5000 1.0e-5 d

In case of solving a threshold-model, a non-linear model will be solved
and the iteration process works on two different levels. Therefore, for a
threshold-model the STOP line must have five entries: an integer, a real
value, a character, an enforcing character f, and one additional integer.
Now the first integer value gives the maximum number of PCG-iterations
within each NR- or EM-round (default is 100 or number of equations in the
MME) and the last integer value gives the maximum number of NR- or
EM-rounds (default is 5000).

RESID A line with one character specifying the calculation of residuals.

10

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

RESID: Calculate residuals? (Y/N)
N

y Yes. Residuals will be written into the file(s) eHat.data(i). When
using mix99s, (i) will be zero (0). In case of parallel processing, each
process writes an own eHat.data(i) file with the process number
(i) at the end of the filename. The order of the residuals corresponds
with the order of observations in the input data file. In case of parallel
processing, the order of the residual files correspond to the order of
observations in the input data file beginning with file zero (0) up to
number of processes minus one. The eHat.data(i) files have as
many columns with residuals as the maximum number of traits in the
largest trait group. This is equal to the mxntra parameter given in the
Parlog file. The Parlog file is produced by mix99i. The residual
columns are ordered in the same sequence as the traits in the trait
groups. For missing observations, the corresponding value in the
residual files are set to the missing value -8192.0.

n No. No residuals are written.
h This option is only available in mix99p and will create the file(s)

ARsiwi.data(i), which contain information about the heterogene-
ity of variance in the residuals. These files are needed only when
accounting for heterogeneous variance (see chapter Contents).

Default value: n

VALID A line with one entry,

VALID: Model validation (N,P,S,Y,D,I,G,R)
N

which instructs the solver to calculate for each observation a correspond-
ing, here specified, sub-quantity of the applied model line, or to instruct
the solver to simulate observations based on the specified model. The
calculated quantities are written to binary files after the iteration process
has ended. Text file is written when the option letter is appended with
letter t, e.g. pt. DYDs are always written to a text file. Missing values will
be specified with -8192.0. The structure of the files will be explained in the
chapter 5:

n None. None of the options are requested.
p Predictions. For each observation, the predicted value (ŷ) is written

to the file(s) yHat.data(i).
s Selected Model Factors’ Sum. For each observation the sum of

selected model factors is written to the file(s) sHat.data(i). The
selected factors must be specified on a following line.

y Yield Deviations (YD). For each observation the corresponding
YD will be written to the file(s) named YD.data(i). The factors
included into the YD must be specified on a following line.

i Individual Daughter Deviations (IDD). For each observation the cor-
responding IDD will be written into the file(s) named IDD.data(i).
The factors included into the IDD must be specified on a following
line.

11

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

d Daughter Yield Deviations (DYD). The solver will calculate for each
observation the corresponding IDD and will use it for the calculation
of DYDs based on the approach of Mrode and Swanson (2004). For
this option the calculated DYD will be written to a formatted filenamed
Soldyd. (see chapter Contents). The factors included into the DYD
must be specified on a following line.

g Generate Observations. This option is available in mix99s only.
The mix99s solver will not solve the model, but instead will generate
for each observation in the data a simulated observation (ỹ). There-
fore, for all effects in the model true solutions will be simulated based
on the provided variance components. Fixed effect solutions will be
set to zero. The true solutions are written to the MiX99 standard
solution files. The generated observations will be written into the
file named ySim.data0. This file can be used in a future MiX99
run to replace real observation by simulated observations. See
the VAR instruction line in the Technical reference guide for MiX99
pre-processor for reading and using of the generated observations
instead of the real observations.
When specifying g a SEED option line must be included after the
VAROPT option line. The SEED option line has one entry, which
must be one of those given in the SEED option description below
(see VAROPT).

r Deregression. (See chapter: “Deregression” in Command Lan-
guage Interface for MiX99).

The options y, i, d and g are not supported when solving non-linear
models.

The options s, y,i, or d will require adding of a second line, which specifies
which factors of the model are included into the calculation of the specified
quantity.

FACTOR One line with as many integers as there are factor columns
defined in the REGRESS instruction line. This is equal to the first
integer value of the REGRESS instruction line (see Technical ref-
erence guide for MiX99 pre-processor). The order of the integer
values on the FACTOR line corresponds to the order of the factors
specified on the REGRESS instruction line. Each integer specifies
whether or not the corresponding factor of the model is included into
the calculation of the desired quantity.

1 The factor will be included into the specified quantity
0 The factor will be excluded from the specified quantity

Specification of the factors for the desired quantities will be as
following:

Let’s assume a model, for which the solver will have the following
model terms available after the model has been solving:

y = Xb̂+Zp̂+Zâ+ ê,

12

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

where y contains the observations, b̂ the estimates for the fixed effect
factors, p̂ the estimates for the non-genetic animal effect factors,
â the estimates for the additive genetic animal factors and ê the
residuals.

Selected Model Factors’ Sum. Any factor included in b̂, p̂, or â can
be included into the sum. All factors included into the sum have to
be specified with ones (1); all factors excluded have to be set to zero
(0).

Yield Deviations (Y D = y −Xb̂−Zp̂). All factors associated with
b̂ and p̂ have to be set to zero (0); all factors associated with â have
to be specified with ones (1).

Individual Daughter Deviations (IDD) and Daughter Yield De-
viations (DYD). The IDD is a quantity which is need also for the
calculation of the DYD. Thus, for both options the same quantity is
needed (IDD = y −Xb̂ − Zp̂ − 1/2âdam). All factors associated
with b̂ and p̂ have to be set to zero (0); all factors associated with â
have to be specified with ones (1).

VAROPT A line with one entry that specifies different options related to the ad-
justment for heterogeneous variance or to the estimation of variance
components.

VAROPT: Variance options for VCE, PEV, HV (N,E,P1,P2,P3,S,C)
N

n None. None of the options are requested.

e <f n> Estimation of Variance Components. The option e will instruct
mix99s to estimate variance components by a stochastic Monte
Carlo Expectation Maximization REML (MC EM REML) algorithm
(for more information please see chapter 9). A special case is option
ei for estimation of variance components of a MACE model (see
Contents). An additional (optional) instruction can be given after the
e (or ei) character. This instruction has two entries; the character f
and an integer number n. The optional instructions are needed in
case certain variance component parameters are meant to be fixed.
This option will be explained in chapter 9.4.3.

When an e (or ei) is defined on the VAROPT option line, three
additional instruction lines have to be given.

STOPE The first line contains four entries of which the last one is
optional; two integers followed by one real value number and
one optional real value number. The first integer number speci-
fies the maximum number of MC EM REML rounds. If the given
number of REML rounds has a negative sign (e.g. -60), previ-
ously run REML estimation is to be continued using this new
total number of rounds. The second integer number specifies
the number of data samples generated and analyzed within a
REML round. The real valued number is the stopping criterion

13

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

for the REML analysis. After the convergence indicator reaches
a value smaller than the specified convergence criterion, the
REML analysis will perform a sequence of final 30 MC EM
REML rounds, which will reduce the Monte Carlo error from
the parameter estimates. The second, optional real value is
the stopping value for solving the BLUP models of the data
samples. This stopping value is applied for the same conver-
gence criterion is as defined on the STOP option line. This
optional value allows to apply different BLUP stopping values
for solving BLUPs of the observed data and the sampled data.
A less strict stopping criterion for the sampled data may reduce
computing time. However, the stopping criterion value needs to
be specified with care, to ensure correct estimation of variance
components.

Default values: 1000 5 1.0e-9 <same as specified by STOP>

SEED The second line contains one entry, which defines the type of
the seed used by the random number generator for generating
the data samples.

d Default initialization by call to random_seed.
r The random number generator is initialized base on the

system clock.
g The user can specify the seeds for the random number

generator. If option g is specified j integers must be
provided in the next line.

Default value: d

MIX99PATH The third line contains the path for the directory where
the mix99i pre-processor executable is located. In certain
intervals the mix99s solver will make a system call to mix99i
to update the preconditioner matrices as explained in chapter 9.
This will also cause an update of the MiX99.lst file. Variance
components listed are no longer the starting values used, but
the intermediate estimates that were applied for the most recent
preconditioner matrix update. If the given directory name is
empty (either a pair of quotation marks ("") or minus sign (-))
the pre-processor is assumed to be located in a directory that
is included in the search PATH.

s Start-up cycle for heterogeneous variance adjustment. After
mix99p has performed a maximum number of 20 iterations (speci-
fied on the STOP option line) it will write heterogeneity of variance
estimates to files named SiWi.data(i). These files will be used
by mix99hv to create the input data files for the applied variance
model that describes the heterogeneity of variance in the data.

c Cycle between models for solving the multiplicative mixed model.
The option is needed for the heterogeneous variance adjustment and

14

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

will instruct mix99p to discontinue in certain intervals the iteration
process and make system calls for solving the variance model by
a second, simultaneous MiX99 analysis. The process will continue
until both models have converged.

ADJUST In case s or c is defined on the VAROPT option line, an
additional line needs to be specified with as many integers as
there are factor columns defined in the REGRESS instruction
line. This is equal to the first integer value of the REGRESS
instruction line (see Technical reference guide for MiX99 pre-
processor). The order of the integer values on the ADJUST
line corresponds to the order of the factors specified on the
REGRESS instruction line. Each integer specifies whether or
not the corresponding factor of the model is included into the
adjustment of heterogeneous variance.

1 The factor will be included into the HV adjustment.
0 The factor will be excluded from the HV adjustment.

Including all factors corresponds to the method by Meuwissen
et al. (1996). When excluding some factors from the HV ad-
justment a restricted multiplicative mixed model will be applied.
Excluding the fixed effect factors from the example model given
in VALID will perform a restricted multiplicative mixed model
adjustment for heterogeneous variance of the form:

yi = Xib̂+ (Zip̂+Ziâ+ êi) γi,

where γi =
1
λi

and λi is the heterogeneous variance adjustment
factor for stratum i.

STOPC In case c is defined on the VAROPT option line, a second
additional line with two entries must be given. The first entry is
an integer value giving the maximum number of heterogeneous
variance adjustment cycles; i.e. the maximal number that the
variance model will be updated and solved. The second entry is
a real value and is the required stopping criterion. The updating
and solving of the variance model will stop when the conver-
gence indicator for the heterogeneity adjustment factors has
reached a value smaller than the specified stopping criterion.
The convergence indicator for the heterogeneity adjustment
factors is calculated as:

cd(k) =

(
l(k) − l(k−1)

)T (
l(k) − l(k−1)

)
(l(k))

T
(l(k))

,

where cd(k) is the value of the convergence indicator in adjust-
ment cycle k and l is the vector of multiplicative adjustment
factors (lambda values).

Default values: 1000 1.0e-7

SOLTYP A line with one character,

15

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

SOLTYP: Solution file options (Y,N,A,H)
Y

which specifies the way solutions are handled. This option became nec-
essary when modules for solving different non-linear models were imple-
mented in the MiX99 package. Solving a standard linear model expects
y. All other options (N,A,H) are related to adjustment of heterogeneous
variance or to non-linear Gompertz models.

y Yes, give standard solution files. Solution files are written in text
format.

n No. No solutions are written. This is useful when specifying option s
on the VAROPT option line.

d DMUINPformat. Option will produce binary and ASCII files with
the pseudo data. See 8.2.2. This option is needed only for a si-
multaneous estimation of variance components for the non-linear
Gompertz function model by, for example, using the DMU package
for the variance component estimation.

One of the two options (a, h) must be defined when using MiX99 for
solving the variance model for adjustment of heterogeneous variance The
option will instruct mix99p to accelerate the solutions of the variance
model between consecutive heterogeneous variance adjustment cycles.
The solutions are written to binary files (SolfixB for strata of the first
effect and SolaniB for strata of the second effect in the variance model).

a Accelerated solutions using Aitken acceleration. This option is suit-
able, if convergence is dominated by a single large eigenvalue. For
many models it yields fast convergence (between 40 to 60 cycles).

h Accelerated solutions using a Half-Chebychev golden ratio procedure
(Hesterberg, 2005). This step-lengthening method follows a golden
ratio procedure. For large and complex models this was found reli-
able, but it requires between 80 to 100 cycles. The option is robust
and therefore recommend for routine evaluations.

16

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

4.2 Command line options
Some of the MiX99 solver options can be alternatively specified from the command line.
List of available command line options of the MiX99 programs, such as the (non-parallel)
solver mix99s, can be obtained with

mix99s -h

This will print the following instructions for mix99s:
Usage:

mix99s [-s] [-i] [-nt nt] [-p|-pt|-pb] [-r|-rt|-rb] [-m]
[-n NITER] [-ncalls NCITER] [-n0 N0ITER] [-c{a,d,r,m} TOL]
[-peek [-]PITER] [-peek_step PSTEP]
[-IOP|-IM|-CHM|-PAR] [-o VAL] [-t tau] [-MES|-MEM|-MEB|-MEA|-MEL]
[-RDS|-RDM|-RDL|-RDX|-RDB <blocksize>|-RDU <mem>]
[-noQ] [-fQP] [-sp val] [-srm n] [-nocov] [-RHS rhsfile]
[-MS] [-PA]
[-h|--help] [-v|--verbose] [-V|--version]
[--bindir BINDIR] [--datadir DATADIR] [--tmpdir TMPDIR]

where
-s: use defaults, solve and produce standard solution files.
-i: use both input file and command line options.
-nt nt: number of threads set to nt.
-p or -pt: use defaults, solve and produce predictions.
-pb: same as -p but produce binary file(s).
-r or -rt: use defaults, solve and produce residuals.
-rb: same as -r but produce binary file(s).
-m: Generate MME.dat and rhs.dat of the problem.
-n NITER: number of iterations.
-ncalls NCITER: number of PCG solver calls (e.g. deregression).
-n0 N0ITER: minimum number of iterations.

Default: 20 if Cd criterion and old solutions, 1 otherwise.
-peek [-]PITER: Write intermediate solutions at iteration PITER.

If negative, file extension _PEEK instead of _<ITER>.
-peek_step PSTEP: Write solutions every PSTEP iterations.

If PITER negative, file extension _<ITER> instead of _PEEK.
-peekcr CRTOL Write intermediate solutions at Cr==CRTOL
-ca TOL: Ca convergence stopping criterion.
-cd TOL: Cd convergence stopping criterion.
-cr TOL: Cr convergence stopping criterion.
-cm TOL: Cm convergence stopping criterion.
-IOP: use iteration on pedigree in inv(A11) of single-step.
-IM: use iteration on matrix in inv(A11) of single-step.
-CHM: use Cholmod in inv(A11) of single-step.
-PAR: use PARDISO in inv(A11) of single-step (default).
-o: coefficient VAL multiplies inv(A22) in ssGBLUP.
-t: coefficient TAU multiplies inv(G)/inv(H) in ssGBLUP.
-MES: no inv(G)/T in memory.
-MEM: read inv(G)/T matrix to memory.
-MEB <bSize>: read inv(G)/T matrix to memory and compute by <bSize>.
-MEA: read inv(G)/T matrix to memory and compute by automatic block size.
-MEL: read inv(G)/T matrix to memory and use efficient multiplication (default).
-RDS: small block size with regression design matrices (RDM). Packed SNP matrix in memory.
-RDM: medium block size with RDM. Packed SNP matrix in memory.
-RDL: large block size with RDM. Packed SNP matrix in memory.
-RDX: full (double precision) RDM kept in memory.
-RDB <blocksize>: given blocksize for RDM.

Packed SNP matrix kept in memory (if blocksize > 0).
-RDU <memory>: given memory usage for RDM. Block size and

packed marker matrix usage depending on <memory>,
where <memory> is <number>[K/M/G/T/P], e.g. 12G.

-MS: Mendelian sampling terms written to SolMS.
-PA: Parent averages written to SolPA.
-noQ: no groups for inv(A22) if none in inv(G).
-fQP: include groups for inv(G) in componentwise ssGTABLUP.
-sp val: second level preconditioner for RegMatrix.

17

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

-srm n : RegMatrix number n is sparse and read to RAM.
-continue_reml: Continue previous REML iteration.
-PEV: Monte Carlo PEV.
-nocov: No residual covariances assumed between traits.
-RHS rhsfile: name of the file for the external right-hand side.
-nocheck: no checking of data and release time information.
-silent: PCG iteration screen output small.
-h or --help : Show usage.
-v or --verbose: Show additional information.
-V or --version: Show version information.
--bindir BINDIR:

Directory for MiX99 binaries. Default: (empty)
--datadir DATADIR:

Data directory. Default: (empty)
--tmpdir TMPDIR:

Directory for temporary files. Default: (empty)
Corresponding environment variables:

MIX99_BINDIR, MIX99_DATADIR, MIX99_TMPDIR
Note: Environment variables are used first, then command line options.

Note: If solver command line options given input file is not
used unless option -i is given in which case command line
options override the input file values.

Example: -n 100 -cd 1e-5
will set number iterations to 100, and will
use Cd stopping criterion with 1e-5 as stopping value.

Some of the command line options of mix99s may not be available in mix99p.

Note that if any solver command line options are given, the solver option file (or the
standard input) is not read by default and the default values are used for options not
specified on the command line.

By specifying command line option -i the solver option file is read first AND options
from the command line override the corresponding solver option file values:

mix99s -s -n 200 -cr 1e-5 -i < solver_option_file.slv

4.3 Sparse regression matrix (srm)
Solver option srm (sparse regression matrix) allows reading the REGFILE matrix to
memory. It is strored as a sparse matrix. Computations use the sparsity of the REGFILE
which can lead to reduction in computing time. This option can be useful when the
REGFILE matrix has genetic group coefficients, i.e., the file has the so called Q matrix
for the phenotype records. The Q matrix can be very sparse.

4.4 No residual covariances (noc)
Solver option noc assumes that there are no residual covariances, i.e., these are zero.
Because no residual covariance computations are computed, this can be faster when
there are many traits. This option can be useful in single-step when many separate
traits are analyzed at the same time. Separate analysis of many single-step models can
lead to large temporary files to be generated and used at the same time. Simultaneous
solving of several such models can be infeasible due to the large RAM memory need.
Use of a multiple trait model with zero correlations without noc option will lead to
making the zero covariance computations. The noc option leads to not making these
computations.

18

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

4.5 Second level preconditioner (sp)
Second level preconditioner for regress matrix can be given. This can be useful when
the regress matrix describes marker effects and the model has a polygenic effect. The
second level preconditioner is applied to all regress matrix effects simultaneously. It
is also applied to all marker effects in the ssSNPBLUP model. The value given for the
second level preconditioner is used to multiply all the regress matrix and marker effect
values after the first level (regular) preconditioner has been used.

4.6 Determining convergence
The solver programs mix99s and mix99p provide five different convergence indica-
tors. The convergence indicators are calculated after each round of iteration and are
written to the standard output:

Iteration Statistics

Convergence Indicators

ROUND CA CR CM CD MAX.CHA.
------- ------------ ------------ ------------ ------------ ------------

Solution vector will be initialized to be zero
rhs’ * rhs = 734663911244.259

animal rhs’ * rhs = 160746417.003415
--
0 1.000 1.000 1.000 0.000 0.000
1 0.1138 0.2698E-01 0.8155E-01 1.000 7.166
2 0.4657E-01 0.1977E-01 0.3428E-01 0.2083 -2.915
3 0.2944E-01 0.1569E-01 0.2513E-01 0.1235 1.821
4 0.2365E-01 0.1201E-01 0.2276E-01 0.1552 2.307
5 0.2375E-01 0.5799E-02 0.2014E-01 0.1615 2.128
6 0.1754E-01 0.4293E-02 0.1565E-01 0.2247 3.150
7 0.1336E-01 0.2695E-02 0.1228E-01 0.1155 -1.904
8 0.9771E-02 0.3307E-02 0.8834E-02 0.8621E-01 1.335
9 0.7163E-02 0.2451E-02 0.6747E-02 0.6375E-01 -1.016

10 0.5710E-02 0.2095E-02 0.5442E-02 0.5017E-01 -1.219

The first four convergence indicators are norms that can be selected as the stopping
criterion of the iteration. For describing these norms, we define that C represents the
coefficient matrix of MME, ŝ(k) the vector of solutions at round k, r the right hand side
of the MME, and M−1 the inverse of the preconditioner matrix, which approximates the
inverse of C. The four norms are:

ca(k) =

√
(r −Câ(k))

T
(r −Câ(k))

(ra)
T (ra)

,

cr(k) =

√
(r −Cŝ(k))

T
(r −Cŝ(k))

(r)T (r)
,

cm(k) =

√
(r −Cŝ(k))

T
M−1 (r −Cŝ(k))

(r)T M−1 (r)
,

cd(k) =

√
(ŝ(k) − ŝ(k−1))

T
(ŝ(k) − ŝ(k−1))

(ŝ(k))
T
(ŝ(k))

,

19

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

where ca(k) is the relative difference between left-hand side and right-hand side (resid-
ual) of the part of the MME which includes the equations of the additive genetic effects;
cr(k) is the relative residual of all effects of the MME; cm(k) is the preconditioned rel-
ative residual of the MME; and cd(k) is the relative difference between solutions from
consecutive iterations.

The norms ca(k) and cr(k) are the most reliable convergence indicators. When solving
a model by PCG, both of these norms get smaller each iteration which indicates that
estimates are converging towards the true solutions of the MME. According to the theory
of the conjugate gradient methods, every conjugate gradient step/iteration will move
the current values to the estimates closer to the true solutions of the MME and, thus,
both norms will be smaller. However, for some models, especially cr(k) can fluctuate
erratically. This is because preconditioning M−1 is not included into the calculation of
the two norms. Moreover, value of the norm varies between models. Because of the
latter two characteristics, it is necessary to find for each model the appropriate stopping
criterion in case the stopping criterion uses ca(k) or cr(k).

The norm cm(k) is preconditioned form of the norm cr(k). It is closer to what the PCG
iteration is minimizing and therefore, at least in theory, it can be less erratic. The
performance, however, depends on the properties of the preconditioning. If there is no
preconditioning (see PRECON instruction), cm(k) is equal to cr(k).

The norm cd(k) is widely used because it is easy to calculate and shows very smooth
convergence. This norm is almost independent from the applied model and it has
been found that a value smaller than 10-5 indicates sufficient convergence for most
of the models solved by MiX99. However, a disadvantage of the norm is that a small
value of this norm is no guaranty for a real convergence. This is commonly so for the
single-step models. We recommend using cr(k) less than 10-7 for single-step models.

The fifth convergence indicator gives the largest change of an estimate between the
last two iterations out of all estimates. A large value at the end of the iteration process
usually indicates that some fixed effect classes have very few observations and no
unique estimate is found for some effect levels. For many models it has been found that
this indicator should converge to a value smaller than 10-1.

In case of solving the multiplicative mixed model for the heterogeneous variance
adjustment (option c at the VAROPT line) only one convergence indicator is provided
during the HV cycling process. For computational ease this criterion is cm(k).

4.6.1 Choosing a suitable convergence criterion
Each of the three available norms for indicating progress of convergence has its own
characteristics as described above. Based on the experiences which we and the MiX99
users gained by solving very different models of very different size, we recommend the
following alternatives ways to secure sufficiently accurate converged solutions:

Alternative 1: Apply a convergence criterion of 10-4 (or between 10-4 and 10-5) to the
convergence indicator CD and check that the convergence indicators CA and CR show
progress of convergence during the whole iteration process.

Alternative 2: Apply the convergence criterion to the convergence indicator CA and
define a convergence criterion, which will ensure that the convergence criterion CD will
have reached a value smaller than 10-4 at the end of the iteration process.

20

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

For some large routine evaluations solving time might be critical, and the solver
should carry out only the least number of required iteration rounds to achieve sufficient
convergence of the solutions. For such evaluations, the most suitable convergence
criterion is found by comparing solutions of several test runs, where different strict
convergence criteria were applied, with “quasi-true” solutions from a test run with a
very strict convergence criterion (e.g. cd(k) norm between 10-5 and 10-6). For many
models it was found that a correlation of ≥0.995 of the genetic animal effect solutions
with the “quasi-true” genetic animal effect solutions indicate that sufficient convergence
has been achieved (Lidauer and Strandén, 1999).

4.6.2 Effect of preconditioning on convergence
The choice of preconditioner matrices can have significant effect on speed of con-
vergence when solving complex models. Generally, the better the inverse of the
preconditioner matrix approximates the inverse of the coefficient matrix of the MME,
the faster convergence of the solutions is achieved. However, specifying large precondi-
tioner matrices may cause a considerable increase in computations at the cost of total
solving time.

The following example demonstrates that the specified preconditioning can significantly
affect the solving time. For specifying the preconditioner matrices, please see PRECON
instruction line in the Technical reference guide for MiX99 pre-processor .

The example data included 374007 test-day records from 19709 cows of 130 herds.
The data was modeled with a multiple trait random regression model including nine traits.
The model including four fixed effects, a random herd-test-day effect and functions for
the within-herd lactation curve, the non-genetic animal effect, and the additive genetic
animal effect. To make the solving of the model as demanding as possible, no rank
reduction was applied. This yielded (co)variance matrices of size 9, 27, 36, 36, and 9
(for the residual), respectively. The MME included over 2 million equations.

Here, the effect of three different preconditioning alternatives will be demonstrated:
Alt.1) a diagonal preconditioner for all effects; this is equal to the diagonal of C. Alt.2)
a block diagonal preconditioner for all effects; the bock size varied between 9 and 36
depending on the effects. Alt.3) a block diagonal preconditioner for all random effects
and one full block preconditioner matrix including all fixed effect equations, which was
of size 7401×7401.

Solving was continued until the convergence indicator cd(k) was smaller than 3.16×10-5.

Preconditioner alternative Number of Solving Size of Pre-
Iterations Time (min) conditioner

(Mb)
Alt 1) Diagonals 3725 56.3 8
Alt 2) Block diagonal 584 13.6 140
Alt 3) Block diagonal + full block 598 24.0 25

Applying a block diagonal preconditioner matrix for all effects yielded the shortest
solving time, whereas apply a diagonal preconditioner matrix for all effects yielded the
smallest preconditioner matrix. Experiences showed that a block diagonal precondi-
tioner is a good choice for many different models. For very large models the size of the

21

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

preconditioner matrices might be critical. Then, a diagonal preconditioner needs to be
applied for some of the effects in the model.

Figure 1: Logarithm of the convergence indicator norms CA, CR, and CD by round of
iteration, given for different preconditioning alternatives when solving a complex model.

4.7 External STOP file: stopping iteration
In some situations, it might be useful that the iteration process is stopped in a controlled
fashion before one of the specified stopping criterion has been fulfilled. The solver
programs can be instructed to stop after the current round of iteration by creating a file
named STOP in the directory where the solver is executed. Then, the solver will write the
most recent solutions to the standard solution files. When parallel computing is applied,
the STOP file has to be accessible by the master process. In case heterogeneous
variance is accounted, a STOP file can be used to stop the cycling between mean model
and variance model. Then, after the current adjustment cycle is finished, the program
will continue with iterations on the mean model until a stopping criterion is reached or
the STOP file is provided a second time. The solvers will erase the STOP file from the
directory to avoid trouble in future analysis.

4.8 External PEEK file: intermediate solutions during iteration
The MiX99 solver programs can also be instructed to store the intermediate solutions
during the iteration by creating a file named PEEK in the directory where the solver is
executed. The existence of the PEEK file is recognized by the solver at run time, the
content of the file is read to memory, and the PEEK file is then removed.

The PEEK file may be either empty or contain one or two integers:

[-]PITER PSTEP

22

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

If the PEEK file is empty, solutions of the current iteration are stored to solution files
named with a _<ITER> suffix, where <ITER> is the iteration number of the current
iteration. If the PEEK file contains one integer (PITER), a target iteration number, the
solutions of that iteration is stored to files with a _<ITER> suffix. Solutions of the
current iteration are also stored if the target iteration has been passed, i.e., current
iteration number is larger than the target iteration specified in the PEEK file. If the target
iteration number is negative (-PITER), the file name suffix is constant _PEEK instead
of the changing iteration number (_<ITER>).

If the PEEK file contains two integers ([-]PITER PSTEP), for example

20 100

the solutions are stored starting from the iteration PITER (20 in the example) and
repeating after every PSTEP iterations (100). The default file suffix is constant _PEEK
so that the possible large solution files do not fill the file space. With a negative starting
iteration number (-PITER) the file suffix contains the iteration number (_<ITER>) but
this must be used carefully.

The starting iteration (PITER), iteration step (PSTEP), and the choice of the file suffix
can also be specified by using the command line options.

4.9 External ITER file: changing parameters during iteration
It may also be useful to be able to modify the parameters of the iterative method during
the iteration. This can happen, for example, if the original maximum number of iterations
is found to be too low or stopping criterion too tight during the iteration.

The solver programs can be instructed to update some of the iteration parameters by
creating a file named ITER during the execution in the directory where the solver is
executed. When parallel computing is applied, the ITER file has to be accessible by
the master process. The ITER file is read in the beginning of each PCG iteration and
affect the iterations henceforth.

Content of ITER is either one or two lines similar to solver option file lines with optional
comment lines. The first line contains the same parameters as the STOP line of the
solver option file with four:

STOP: maxiter, tolerance, criterion (A/R/M/D), [enforce (F)]:
6000 1.0e-6 M F

or five parameters on the line:

STOP: maxiter, tolerance, criterion, [enforce(F), maxiter non-linear]:
6000 1.0e-6 M F 1000

The fifth parameter is used by threshold-models and deregression. Parameters on the
STOP line control the normal PCG iterations of the solvers.

For estimating variance components, optional second line similar to STOPE line of the
solver option file can be specified:

STOP: maxiter, tolerance, criterion (A/R/M/D), [enforce (F)]:
6000 1.0e-6 M F

STOPE: REMLrounds, nSamples, Conv.value VCE
200 10 1.0e-10

23

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

Parameters on the STOPE line control the MC EM REML iteration.

Alternatively, in the case of heterogeneous variance, the second line of ITER file is
similar to STOPC line of the solver option file:

STOP: maxiter, tolerance, criterion(A/R/M/D), [enforce(F)]:
6000 1.0e-6 M F

STOPC: max.HYcycles, conv.value for lambda estimates (Cd^2)
100 1.0e-9

In order to create the ITER file safely without the danger of the solver program concur-
rently reading possibly incomplete file content, a lock file ITER.LOCK can be created:

touch ITER.LOCK
cp -f ITER.NEW ITER
rm -f ITER.LOCK

The solver does not read an existing ITER file as long as the lock file ITER.LOCK exists.
After reading and accepting the ITER file successfully, it is renamed to ITER.OLD.

Reading of the ITER file is notified by a message listing the changed parameters:

************************ M i X 9 9 s M e s s a g e ************************
Message: Time: 13:30:10.7 02.07.2019

Updating iteration parameters from ITER file:
- Solver STOP line in ITER file:

>> 6000 1.0e-6 M F
- Max. number of iterations changed from 5000 to 6000.
- Stopping criterion value changed from .5e-6 to .1E-7.
- Stopping criterion changed from D to M.

- Renaming ITER file to ITER.OLD.

24

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

5 Output files of the MiX99 solvers
5.1 Standard output
The solver programs mix99s and mix99p will write information about the specified
solver options, about the iteration process as well as a sample of solutions and the
description of the solution files to standard output.

Example of MiX99 solver output:
...

___________________ Parameters ___

Memory requirements : high.

Number of trait patterns : 1
Number of residual (co)variance matrices : 1
Number of inv(R) matrices : 1

Given number of CPU threads : 10
Number of CPU threads by MKL : 10
Number of CPU threads by OpenMP : 10
Checking of release information in files : yes

Maximum Number of PCG Iterations 10
Minimum Number of PCG Iterations 1
PCG Stopping Criterion CR < 0.1000E-07

Calculate residuals : No.

Standard solution files.
Preprocessor program git number: 31ae24d7

MiX99_SOLVE: Start of PCG Iteration Time: 11:12:35.5 30.09.2025

Iteration Statistics

Convergence Indicators

ROUND CA CR CM CD MAX.CHA.
------- ------------ ------------ ------------ ------------ ------------

Solution vector will be initialized to be zero
rhs’ * rhs = 0.185225002431870

animal rhs’ * rhs = 5.070000081062319E-002
--
0 1.000 1.000 1.000 0.000 0.000
1 0.4842 0.2575 0.2207 1.000 3.430
2 0.1754 0.9276E-01 0.7472E-01 0.1539 0.3692
3 0.1104 0.6328E-01 0.5308E-01 0.8938E-01 -0.3294
4 0.7422E-01 0.4172E-01 0.3741E-01 0.1179 0.3491
5 0.8466E-01 0.4494E-01 0.3465E-01 0.6819E-01 -0.2029
6 0.3030E-01 0.1594E-01 0.1380E-01 0.6376E-01 0.1943
7 0.1739E-01 0.9124E-02 0.7221E-02 0.2382E-01 -0.9714E-01
8 0.6203E-02 0.3774E-02 0.3381E-02 0.8615E-02 -0.2129E-01
9 0.9535E-03 0.4991E-03 0.4089E-03 0.4604E-02 0.1745E-01

10 0.1013E-14 0.5360E-15 0.4344E-15 0.9120E-03 -0.3014E-02

Number of iterations reached the number of equations (10)!
Stopping criterion CR < 0.1E-7 achieved in 10 iterations.

25

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

MiX99_SOLVE: End of PCG Iteration Time: 11:12:35.5 30.09.2025

Solutions for First 20 Levels of Across-Block Fixed Effect: 1 sex

Fact.Trt _____Level_____ N-Obs Eq-No Solution Factor

1 1 1 3 9 4.35850 sex
1 1 2 2 10 3.40443 sex

First 20 Individual Additive Genetic Solutions

Fact.Trt __Animal-ID____ N-Desc N-Obs Eq-No Solution Factor

1 1 1 2 0 1 0.984446E-01 animal
1 1 2 2 0 2 -0.187701E-01 animal
1 1 3 2 0 3 -0.410842E-01 animal
1 1 4 1 1 4 -0.866312E-02 animal
1 1 5 1 1 5 -0.185732 animal
1 1 6 1 1 6 0.176872 animal
1 1 7 0 1 7 -0.249459 animal
1 1 8 0 1 8 0.182615 animal

Description of the Solution Files:

"Solfix"-File: Solutions for Across-Block Fixed Effects

Column | Description

1 Factor Number
2 Trait Number
3 Level Code
4 Number of Observations
5 Solution
6 Name of Factor
7 Name of Trait

"Solani"-File: Solutions for the Individual Genetic Effects

Column | Description

1 Individual ID
2 Number of Descendants
3 Number of Observations
4 Solution for Trait 1 weaningW and Factor animal

MiX99_SOLVE: --- D O N E --- Time: 11:12:35.5 30.09.2025

5.2 Successful execution of MiX99 solver
Successful execution of MiX99 program is indicated with a line containing

--- D O N E ---

in the end of the output of the program. Before finishing an error-free execution MiX99
program will also create an OK-file named OK_<program>, i.e. OK_mix99s or OK_-
mix99p for the solvers. If this file is missing, the program was terminated due to some

26

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

error. When using MiX99 through a script, please check existence of the OK-file.

Convergence of the PCG iteration process is reported with one or more lines of infor-
mation depending on the values of the convergence indicators, how the iteration was
ended, and the number of iterations.

If the iteration process was stopped using an external STOP file, this is indicated with:

Iteration process has been stopped externally!

If the number of iterations reached the number of equations that is the maximum allowed
number of iterations, this is indicated with, for example, line:

Number of iterations reached the number of equations (10)!

As the main convergence information, if the user given stopping criterion was achieved
during the iteration, this is indicated with a line containing, for example:

Stopping criterion CR < 0.1E-7 was achieved in 10 iterations.

Otherwise, opposite result is indicated with:

Stopping criterion CR < 0.1E-7 was _NOT_ achieved in 10 iterations.

If CD convergence indicator was as the stopping criterion, it is reminded that the cd
indicator needs to be smaller than the given tolerance by two consecutive iterations:

NOTE: CD criterion must be met by two consecutive iterations!

In addition to the user chosen stopping criterion, the convergence of the cd convergence
indicator is reported depending on its last value with lines:

Solutions have converged according to CD criterion of the last iteration.

Solutions most likely converged according to CD criterion of last iteration.

Solutions converged poorly according to CD criterion of the last iteration.
Some solutions may be unreliable.

or

Solutions converged very poorly according to CD criterion of last iteration.
Some solutions are unreliable.
Please check your data, pedigree, (co)variance components, and the model.

Additional lines are also shown if the last largest change indicator was very large:

Very big largest round to round change for solution (MAX.CHA.):
Size of change: 249849832.9823978
Equation number: 12998

Please check fixed effect classes.

Lastly, if the number of iterations was very high, this is indicated with:

Model showed poor iteration convergence characteristics.

or

27

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

Model showed very poor iteration convergence characteristics.
Please check your data, model, and pre-conditioning!

5.3 Solution files
5.3.1 Formatted solution files
The structure of the standard solution files depends on the model. Therefore, the
solvers write for each solution file an explanation to the standard output after the solving
procedure has finished.

Solani Solutions for additive genetic effects.

SolMS Mendelian sampling terms computed from additive genetic effects.

SolPA Parent averages computed from additive genetic effects.

SolSNP Solutions for marker effects in the component-wise ssGTABLUP and
ssSNPBLUP.

Solfix Solutions for all across blocks fixed effects.

Solfnn Solutions for the nth within blocks fixed effect. E.g., Solf02 is the solution
file for the 2nd within block fixed effect.

Solrnn Solutions for the nth random effect in the model. E.g., Solr03 is the solu-
tion file for the random effects with the random effect number 3. Solution
files for the random effects are optional (see RANSOLFILE instruction line
in Technical reference guide for MiX99 pre-processor .

Solreg Solutions for the regression effects applied across the whole data. (Speci-
fied on the REGRESS instruction line. see Technical reference guide for
MiX99 pre-processor .

Soldyd Solution files with daughter yield deviation for sires.

Sol_mn For some LS-models only. Solution file with the estimate for the mean.

5.3.2 Unformatted solution files
The MiX99 solvers write solutions to unformatted files which will allow a restart of the
solvers with the solutions given in these files.

Solvec The mix99s solver writes a copy of the solution vector to this file after
the end of the iteration process. At each start of mix99s the program
will check whether a Solvec file is provided, and if so, it will initialize
the solution vector with solutions given in Solvec. Thus mix99s can be
restarted without running the pre-processor.

Note, the pre-processor mix99i will erase an old Solvec file. In case
the mix99i pre-processor is instructed to include old solutions, it will
create a Solvec, which will be read by the solver. For instructing MiX99
to read old solutions please see SOLUNF instruction line in the Technical
reference guide for MiX99 pre-processor .

Solpriv(i), Solcommon These files contain the solutions private to each process
and common to each process. These files allow restart of the mix99p

28

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

solver. The files have the same meaning as the Solvec file for the
mix99s solver.

Solunf Contains all solutions to the MME and the original ids of all effect levels.
This file is optional (see SOLUNF instruction line in the Technical reference
guide for MiX99 pre-processor) and can be rather large. The file can be
used to initialize, in a future evaluation when more data has accumulated,
the solution vector with old solutions. For a future evaluation the file must
be renamed to Solold to be read by the mix99i pre-processor.

5.4 Files for model validation purposes
The solver programs can be instructed to provide information useful for model validation
purposes or information need for other type of analyses. The specified option on the
RESID and VALID option lines will instruct which of the following unformatted files are
created:

eHat.data(i) File(s) with residuals.

yHat.data(i) File(s) with predicted observations.

sHat.data(i) File(s) with a sum of selected model factors.

YD.data(i) File(s) with yield deviations.

IDD.data(i) File(s) with individual daughter deviations.

The mix99s solver will create one file only with a zero character (0) added at the
end of the filename. The parallel solver mix99p will create as many files as there are
processes specified for the parallel run. The files are numbered by (i), where (i) goes
from zero to number of processes minus one and the number is added at the end of
the filename.

The file(s) contain strictly as many rows as there are data rows in the input data file,
regardless whether some input data is missing or not used in an analysis. The order of
the rows is consistent with the order of the data rows in the input data file. Each row
consists of a fixed number of real values, which depends on the applied model. The
number of real values is the same on all rows and is equal to the number of traits in
the largest trait group. This number is equal to the mxntra parameter in the Parlog file.
The Parlog file is produced by mix99i pre-processor. The real values in a particular
row correspond to the trait group that is specified on the corresponding data row in the
input data file. The order of the values within a row corresponds to the order of the traits
within a trait group as specified on the MODEL instruction lines (see Technical reference
guide for MiX99 pre-processor . In case an observation is missing in the data file or it is
not used in the analysis, a missing value variable will be written for the corresponding
real value. This missing value variable is -8192.0. In case the SCALE option is used,
all information will be transformed back to the original scale before writing to the files.

All values on a row are stored as single precision real values and simple Fortran
programs can be written to transfer the files to text files. However, the MiX99 pack-
ages provides MiXtools programs, which allows simple analyses of the information
(means and SD by classification), or merging of the files with the input data file. See
MiXtoolmerge.f90 and MiXtoolms.f90 in the MiXtools directory of the pack-
age.

29

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

6 Reliabilities
6.1 Approximate reliabilities using ApaX
Sometimes reliabilities (accuracy squared) of estimated breeding values are needed,
e.g., Interbull requires reliabilities for the evaluated bulls. Reliabilities need elements
of inverse of the mixed model equations (MME). Exact inverse of MME cannot be
computed in most cases due to computing time or memory limitations. Thus, approx-
imations need to be used. A separate program named apax99 has been made to
calculate approximations to reliabilities. A parallel computing version has been written
as well, named apax99p.

In general, ApaX was made to handle linear animal models. However, even here there
are restrictions. Reliability calculation accounts only those effects that are defined to
be within block. Thus, ApaX requires that both a block code and a relationship code
have been defined. Further, some new features are not yet supported. For example,
no additional correlation files (needed by MAS BLUP), or regression design matrices
(needed by genomic BLUP) are accounted by ApaX.

Four approximation methods to calculate reliabilities have been implemented with some
additional ones being variations of these four methods. The approximation methods
have two steps (Strandén et al., 2000). The first step accounts for data design, and
the second step accounts for relationship information. The first step is the same for
all approximation methods and is computationally most demanding. This step uses
parallel computing in apax99p.

The following calculation methods are base to all available methods:

1) Interbull reliabilities (Strandén et al., 2000)
2) Misztal and Wiggans approach (Misztal and Wiggans, 1988)
3) Jamrozik et al. approach (Jamrozik et al., 2000)
4) Tier and Meyer approach (Tier and Meyer, 2004)

Reliabilities by method 4, i.e., Tier and Meyer approach, are available in the single
processor apax99 and parallel apax99p versions.

Some notes on the base methods:

Method 1. Calculations are based loosely on the guidelines set by Interbull, and
have been accepted by Interbull to be used in the Finnish dairy cattle
evaluations. There is a post-processing program called BR2.f90 that
produces the information required by Interbull from the output given by
apax99 or apax99p.

Method 2. Approximation has two steps. The first step calculates information amount
due to observations by model design. The second step uses the method
of Misztal and Wiggans (1988) to incorporate relationship information.

Method 3. Similar to method 2, except that the method by Jamrozik et al. (2000) is
used in the second step to account for relationship information.

Method 4. The first step is the same as in the other approximation methods 1-3.
However, all subsequent calculations use matrices unlike the other ap-
proximations that rely on scalar computations for multiple trait cases as

30

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

well. Because of matrix computations, method 4 often uses more memory
than the other approximation methods, especially when many traits and/or
random regression test day models are analyzed.

6.1.1 Approximate reliabilities for single-step
The single-step genomic BLUP model includes a genomic relationship matrix. This
will lead to a different kind of relationship matrix than having only the pedigree-based
relationship matrix A. ApaX assumes that the full G−1 − A−1

gg has been given and
is available to the reliability calculations. However, this information is used only if
requested (see below). In general, the computational steps are

1) calculate effective record contributions.
In this step, non-genetic effect information is accounted.

2) calculate reliabilities.
In this step, effect of the pedigree-based relationship information is accounted

3) single-step reliabilities.
In this step, effect of genomic information to the genotyped animals is accounted.

There are three approaches for the single-step models in the last step:

G0 Do not account genomic information (default)

G1 Use Misztal approximation method 1

G2 Use Misztal approximation method 2

Because there are many ways to compute breeding values for single-step, but only
one single-step model is allowed, the approach without accounting genomic informa-
tion is the default. We have developed more accurate and less memory consuming
approaches than the G1 and G2 approaches. These require more than just one execu-
tion of ApaX. Nevertheless, we recommend using these better approaches instead of
the options given here (G1 and G2).

When genomic information is accounted, the Misztal approximation methods (Misztal
et al., 2013) are used (G1 or G2). Method 1 (G1) uses the full genomic relationship
matrix as a block, and method 2 (G2) relies only on its diagonal values. Consequently,
G1 can be computationally demanding when the number of genotyped individuals is
large. Both methods invert matrices having the external matrix, either the full matrix or
its diagonal. If the matrix is not positive definite or the resulting reliability is less than that
already calculated using pedigree information, the original pedigree-based information
reliability is kept. Thus, It is possible that including genomic information using method
G1 and G2 does not lead to an increase in reliability compared to pedigree-based EBV
reliability.

6.1.2 Differences of reliability calculation and breeding value estimation
Steps for calculation of approximate reliabilities by the MiX99 package are similar to
solving MME by mix99s/mix99p. The apax99 and apax99p programs accept data
prepared by mix99i. There are, however, some restrictions and modifications to the
regular directive files:

1) Block and relationship codes need to be defined in the data and pedigree files,
see command DATASORT. Use of automatic block codes can lead to too low

31

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

reliabilities.

2) Only effects that are defined to be within block are considered when approximate
reliabilities are calculated.

3) Animal genetic effect has to be the first effect in the within block equations.

4) Inbreeding coefficients are not accounted in the reliability computations.

5) No heterogeneous variance modeling is accounted (multiple residual variance
matrices are, however, used in the first step when calculating cow reliabilities but
not in the second step where the residual is taken from the variance component
file for all random effects).

6) Preconditioner matrix information is ignored. Thus, computationally lightest pre-
conditioner, i.e., no preconditioner, can be best when no breeding values need to
be estimated.

7) Genetic groups can exist in the pedigree and data but are not accounted in the
reliability calculations. Hence, results are the same with or without genetic groups.

8) External correlation matrices in a file for random effects are not accounted except
in single-step model parts of the additional matrix needed by single-step are used.

9) Regression coefficient matrices are not accounted.

The use of block and relationship codes in the data file means that corresponding
values are in the pedigree file. The first column in the pedigree file has the relationship
code and the fourth column has the block code. The data file has to be sorted by the
block code as the first key, and the relationship code as the second key. When trait
groups are used, the data needs to be sorted by trait group as the third key.

In practice, the (first and) second restriction relates to memory use. Although it is
possible to combine large herd blocks in breeding value estimation without problems
(especially in single processor case), here large blocks may use too much memory. It
is advisable to have blocks with contemporaries in the same block, e.g., herd. If there
are many animals that have observations in several blocks (e.g., herd changing cows),
memory may become a limiting factor. Some animals do not have a herd number. Then,
a dummy herd number needs to be used. Several dummy herd numbers may have to
be used in order to keep memory requirements tolerable. Sometimes even animals
with observation lack herd number. Then, dam herd number (or dam’s dam etc.) may
give optimal performance. See Technical reference guide for MiX99 pre-processor for
visual tools on blocks (Visualizing block-to-block dependencies).

After running the preprocessor program mix99i, a program called imake4apax needs
to be executed before running the parallel version apax99p. When breeding values
are estimated, number of common blocks need to be defined. Here it does not matter
how many common blocks have been given because imake4apax will reset this to zero.

32

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

6.1.3 ApaX instruction file
The ApaX reliability approximation programs apax99 and apax99p require informa-
tion, which is read by the standard input of the programs.

Example of ApaX instruction file:
Reliability method (AccurType):
2

Number of non-zeros in sparse matrix (MaxNonZ):
10000

Original dir file (OriginalDir): "-" = MiX99_IN.DIR and MiX99_IN.OPT:
-

Absorption level effect (JFilter):
2

The information is given on instruction lines in the same order as presented below.
Information that is model dependent is given in italics:

AccurType Number of approximation method:

1 Interbull EDC/ERC and reliabilities (sire model)
2 Misztal & Wiggans
3 Jamrozik et al. approach
4 Interbull Tier and Meyer approach

The following are available only in apax99:

10 Interbull EDC/ERC/reliabilities, genotyped discounted (sire model)
11 Like "10" but animal model
20 Reversed reliability approximation

For parallel computing there is option 1d for the Interbull method that is
for distributed memory computers. In 1d the second step of the Interbull
method uses parallel computing as well. The main advantage is distribu-
tion of memory where each parallel job uses less memory than a single
processor version but combined memory use is greater.

Several additional options can be given on this line:

G0 No genomic information used for single-step (default)
G1 Use approximate method 1 for single-step
G2 Use approximate method 2 for single-step
O Write PEV.bin file after the 1st approximation step.
I Read PEV.bin. Thus, no need to perform the 1st step.
M Maternal and direct genetic trait assumption in calculation of phe-

notypic variance. Thus, when additive genetics has both direct and
maternal effects, it is necessary to inform the program that correct
formula is used in calculation of phenotypic variance:

var(gdirect) + var(gmaternal) + cov(gdirect, gmaternal) + var(residual).

R Maternal genetic reliabilities. This option informs that maternal trait
reliabilities should be calculated instead of direct genetic reliabilities.
Please use option M as well to have phenotypic variance calculated
properly.

33

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

V Compute variances of random effects to file APAX_VAR_COMP.TXT.
The variance components are by the defined test-days in a random
test-day regression model.

L Long output listing. Default is short output listing.
C Cancel checking of pedigree loops (in apax99).
P Pedigree filename given instead of original directive filename (for

reversed reliability approximation).

Options O and I allow quicker execution when multiple approximation
methods need to be executed. For example, method 1 and 2 reliabilities
need to be calculated. First, make method 1 reliabilities and write file
PEV.bin. Then, PEV.bin is read (input) and used in a subsequent run
to calculate method 2 reliabilities without the time consuming 1st step. Note
that the directive files (for mix99i and apax99) need to be exactly the
same in the two runs except for change in first command line to apax99
where reliability calculation method and options can be changed.

MaxNonZ Maximum number of non-zeros in the sparse matrix of the largest block.
The program will process data block by block, and build coefficient matrix
of the mixed model equations (MME) for the equations within block. MME
of each block is stored as a sparse matrix, and, here, maximum number
of non-zeros element in the sparse matrix is given.

It is not necessary to know exactly this value because dynamic memory
allocation approach is used to increase size of the sparse matrix. However,
it may be good to have a reasonable value for the required size. The im-
plemented dynamic memory allocation approach increases sparse matrix
by 50% when the matrix becomes full. Consequently, memory may be
reserved more than actually required (at most 50% more).

In shared memory parallel computers this may be very important. Note
that if memory is increased above available memory, less than 50% is
added. Eventually, no memory can be added to increase sparse matrix
size, and then disk is used through file Sparse_Matrix.DMPz where z
is the process number. Note that this will slow computations considerably.
Naturally, the sparse matrix cannot grow beyond size of available disk
memory.

StartDIM OPTIONAL: asked only when a covariable table was given in the
directive file. Starting index value of the first line in the covariable table,
if covariable file is present. The data file has index values (see 7.3) that
correspond to lines in the covariable file. Each line of the covariable line
is stored internally in MiX99 compactly such that the starting index value
is lost. This information has to be given again here. In dairy cattle, this is
often the lowest value for days in milk.

CovarInfo OPTIONAL: asked only when a covariable table was given in the
directive file. One line for each model line in the directive file for mix99i,
if covariable file is present. Each line has 3 numbers: Smallest covariable
table index value used for the breeding value index using random regres-
sions, number of covariable table calculation points, and distance between

34

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

the points. For example, if breeding value is defined by calculating random
regressions from days in milk every day from 8 to 312 (to get 305 day
breeding values), then a triplet 8 305 1 is given (StartDIM above must be
8 or lower). If the days are from day 15 every 30th day for 10 points, then
the triplet is 15 10 30.

OriginalDir Name of the original directive file given to the pre-processor program
mix99i. If dash (-), uses the input directives and command line options
stored in files MiX99_IN.DIR and MiX99_IN.OPT by the last run of the
pre-processor.

NumBVs OPTIONAL: Asked only when there are more than one trait in the
model. Number of breeding values to be calculated. Zero (0) indicates
breeding values for all traits with default Weights. Zero is allowed only for
models for which the default weights can be deduced. NOTE: the value
can be at most number of traits.

Weights OPTIONAL: Asked only when NumBVs is greater than 1. A line for
each breeding value index (NumBVs). Each line gives weights according
to the breeding value index wanted. Number of weight values on each
line is equal to the number of traits in the model. For example, there are
three traits in the model. Now, an index weight line has three values, each
informing how the traits are weighted in a breeding value index. A valid
line would be like ‘1 1 0’ where the first two traits are weighted equally
but last one is not accounted.

H2calc OPTIONAL: Asked only when there are more than 2 random effects,
i.e., more than just genetic and residual random effects. Random
effect numbers included in the calculation of phenotypic variance in heri-
tability, if more than 2 random effects (i.e. additive genetics and residual)
in the model. The two last random effects (genetic and residual) are auto-
matically included in the calculation of phenotypic variance of heritability.
However, when there are other random effects as well, their inclusion is
asked here. The random effects are numbered as in the parameter file for
variance components. For example, there are five random effects: herd
test month (number 1), first permanent environment (2), second perma-
nent environment (3), additive genetic (4), and residual (5). If all but herd
test day is wanted in the heritability then a line ‘2 3’ is given indicating that
second and third random effect are included in the phenotypic variance.

JFilter Calculation of reliabilities is programmed such that all within block effects
are absorbed to the animal genetic effects. They can be absorbed either
exactly or approximately. JFilter describes which effects are approximately
absorbed. If the exact absorption is done, the sparse matrix may be filled
and exhaust available memory. In addition, the computations may be
slow. Therefore, some effects can be only approximately absorbed with
no additional fill-in to the sparse matrix. In order to minimize memory
use in absorption, ordering of the effects within block should be such that
the smallest number is given to an effect with observations from a single
animal and larger numbers to the effects with observations from several

35

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

animals. Effects are ordered as given in the within block ordering. Exact
absorption is commonly done for the effects that are within animals such
as permanent environmental effects. For example, let’s consider a case
in which we have three within block effects: 1) genetic, 2) permanent
environment, and 3) herd year. If we want to absorb the herd effect
approximately, the JFilter value of 3 is given. Thus, only the permanent
environment effect (effect 2) is exactly absorbed to the genetic effects. In
a situation, in which we want to exactly absorb all other within block effects
to the genetic effects (n within block effects), a value of n+1 should be
given to the JFilter. In the example given above, JFilter would be 4.

6.1.4 Guidelines for determining blocking and JFilter
Two of the most difficult variables affecting reliability calculations are blocking (SORT_R
and absorption level (JFilter). Some guidelines for calculation of reliabilities:

1) Start model building for reliability calculations from a simple to a more complex
model.
The simplest model for reliability calculations should have the genetic effects and non-
genetic animal effects (e.g., permanent environment). Then, some kind of management
effect can be tested in the model. Management effects are commonly approximately
absorbed (see next comment) and can create problems in absorption process. Look at
the output. Perhaps, there are many management effects or alternatives. Test them
separately. The less there are messages of type ‘ABSORB: Singularity in row’ the
better from numerical calculation point of view.

2) Have only one effect per trait absorbed approximately.
When several effects are absorbed approximately, they tend to double count information,
and may lead to negative information which is seen as messages of singularity given
by the absorption procedure. Approximate absorption does not account possible co-
linearity or other correlations in design between effects. As an extreme case, assume an
effect being twice in the model and both effects are absorbed approximately. Then, the
other effect will lead to double accounting of the effect, because approximate absorption
does not notice that the same effect is twice in the model. This means that prediction
error variance left for an individual can become negative. In general, this is the more
likely the less there are number of observations in an effect class, e.g., small herd and
herd-year classes.

The approximately absorbed effect from the full model should be the one with most levels
for the model to account best management effect from modelling point of view. This
effect is typically a herd management effect by time effect like herd-year. Unfortunately,
this can be numerically the worst effect. Sometimes it is possible to have more than
one effect per trait if all approximately absorbed effects are random. However, this is
very rare due to likely increase in numerical problems.

3) All effects close to animal (e.g., permanent environment) should be absorbed exactly.
These effects do not result in additional fill-in, if order of observations for an animal can
be such that they are close to each other. If observations of an animal are in different
blocks, then memory is used more.

4) Blocking should be used to group animals by the herd management effect in the
model (management without time) for efficient memory management.

36

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

• If there are too many blocks, then memory is used too much because many
animals tend to become block/herd changers.

• If there are not enough blocks, memory is again used too much, because all
information for a block is read to memory.

5) If there is a maternal effect in the model, try to have dam in the same block as its
offspring with observations. When dam is in a different block than any of its offspring,
the two blocks are connected, and there are block changer equations. ApaX will make
a separate block from these block changers. The block should be kept as small as
possible for memory reasons by ordering as many dams as possible to the same blocks
as their offspring with observations.

If there are problems with reliability calculations, it is best to start with a simple model
which has only animal genetic effect. Then increase level of complexity in the model.
Problems in reliability calculations involve: long computing time, unusual reliabilities
(close to one without reason), diminishing reliability with increased data. Changes in
blocking strategy, absorption level or effects in the reliability calculations model are
most likely to cure any problems.

Finally, one useful strategy in understanding reliability calculations is to have a dummy
pedigree where all animals have unknown parents. Reliabilities using such pedigree
can be compared with reliabilities by complete pedigree information (using methods 2
and 3). Comparison shows if the problems are due to pedigree, and not due to above
mentioned variables. In addition, it gives information on which animals are the ones
with most problems.

6.1.5 ApaX Output files
Once apax99 or apax99p has been executed, the reliabilities will be written to a
solution file, called PEVani. The solution file has similar structure to the solution file
Solani produced by the solver programs. However, the PEVani file has a different
format depending on the computing method used. When the Interbull method is used
each line has both effective daughter contributions (EDC) for sires (effective record
contributions (ERC) for others) and reliabilities. When any other method is used, only
reliabilities are given and format of the PEVani file is the same as the Solani file.

The PEVani file produced by the Interbull method can be made more accessible by
program BR2.f90. This program expects that files PEVani and BR2.dat written by
apax99/apax99p are available. In addition, names of two files are asked:

SireFile This file has id numbers of all the sires for which the sire reliabilities were
calculated. The file should be a regular text file with each line having a bull
id number as the first number.

OutFile This is the output file that will be generated.

Each line of the output file has the following information:

1) Id number of a bull.
2) Effective daughter contributions (EDC) for each sire breeding value (second

pedigree file column) and effective record contributions (ERC) for all the others.
3) Reliability for each breeding value according to EDC/ERC.

37

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

6.1.6 Example of ApaX instruction file

ApaX99 instruction file:
Type of analysis: 1= Interbull accuracies
1
Maximum number of non-zeros in the sparse matrix
600000
Start DIM in covariable table file,
1
For each model line: First DIM, Number of DIMS, DIM step
8 305 1
8 305 1
8 305 1

Original directive file given to mix99i (or -):
miniT.mix
Number of breeding values
3
Weights for breeding values
1 0 0
0 1 0
0 0 1
random effects accounted in h2 calculations
2
Absorption level effect
3

MiX99 instruction file for mix99i (miniT.mix):
Estimation of breeding values for milk, protein kg and fat kg for the
Finnish dairy cattle using a multiple trait random regression test day
model based on covariance functions. Reduced data and model: only first
lactation included.

title

Finnish RRTD-Model; first 0.1% of data from 1988 to Feb. 2000
#INTEGER
herd animal trgrp cowxlac hy htd mg ym yr_sea age dcc dim

#REAL
milk protein fat

traits
3

trait-groups, input column
1 3

input column of block code and relationship code
1 2

number of fixed- and random factors columns in the model lines
8 13

MODEL:
| fixed effects |ran|non-hereditary | add. genet.
| | season | |dom| across 1&2 L | animal eff.
#s t wt|s1 s2 s3 s4 s5|age dcc ym|htm|n1 n2 n3 n4 n5 n6|a1 a2 a3 a4 a5 a6
1 1 - 9 9 9 9 9 10 11 8 6 2 2 2 2 2 2 2 2 2 2 2 2
1 2 - 9 9 9 9 9 10 11 8 6 2 2 2 2 2 2 2 2 2 2 2 2
1 3 - 9 9 9 9 9 10 11 8 6 2 2 2 2 2 2 2 2 2 2 2 2
order of effects within block

- - - - - - - - 3 2 2 2 2 2 2 1 1 1 1 1 1
#htm n1 n2 n3 n4 n5 n6 a1 a2 a3 a4 a5 a6
1 2 2 2 2 2 2 3 3 3 3 3 3
1 - - - - - - - - - - - -
1 - - - - - - - - - - - -

pedigree for animal effects: num: a1 a2 a3 a4 a5 a6
6 1 1 1 1 1 1

#n s1 s2 s3 s4 s5| age dcc ym|htm|n1 n2 n3 n4 n5 n6| a1 a2 a3 a4 a5 a6
21 t1 t2 t3 t4 t96 cl cl cl cl t5 t6 t7 t8 t9 t10 t59 t60 t61 t62 t63 t64
21 t1 t2 t3 t95 t97 cl cl cl cl t11 t12 t13 t14 t15 t16 t65 t66 t67 t68 t69 t70
21 t1 t2 t3 t95 t98 cl cl cl cl t17 t18 t19 t20 t21 t22 t71 t72 t73 t74 t75 t76
combining of traits

38

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

y
| fixed effects |ran| non-hereditary | add. genet.
| | season | |dom| across 1&2 L | animal eff.
s1 s2 s3 s4 s5|age dcc ym|htm|n1 n2 n3 n4 n5 n6|a1 a2 a3 a4 a5 a6
1 1
2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
3 3 3 3 3 3 3 3 3 1 1 1 1 1 1 1 1 1 1 1 1

covariable filename:
suomiTDMpara.cov

number of covariable columns
100

integer input column in data file with covariable index (DIM)
12

method used for relationship
am

input file
Ter.dat

int-col. real-col. form
12 3 f

code for missing real values
0.0

scaling (y/n)
n

pedigree file
miniTDM.pedi

parameter file
suomiTDMpara.in

directory for the temporary files
.

solution files for random effects: htm non-ac animal
n n y

binary solution file
n

block preconditioner WpW, XpX (=D_M)
d d d d

39

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

6.2 Exact reliabilities using exa99
Approximate reliabilities can be calculated using apax99. However, MiX99 contains
another program, which allows the exact calculation of accuracies via inversion of the
coefficient matrix. The program is named exa99, has dynamic memory allocation,
and is executed after running the pre-processor mix99i. exa99 is only useful for
small problems (up to 200 000 equations). When specifying the model in the MODEL
line(s) of the MiX99 instruction file for mix99i, it is important to order the effects by
number of levels. For within block effects, the effect with the most levels should get the
lowest block ordering number and the effect with the least levels the highest. Similarly,
for across block fixed effects, the effect with most levels should be specified first and
the effect with the least levels should be specified last. This is important to keep the
memory requirements as low as possible when inverting the coefficient matrix.

6.2.1 Option file for exa99
Execution of exa99 requires an option file, which is read by standard input. The first
information asked by exa99 are internal storage format used for making coefficient
matrix of the mixed model equations. There are three formats:

F Full dense storage

F

Internally the program stores the coefficient matrix in a rectangular double
precision matrix. In practice, this storage format will give the fastest
computations but may require a lot of computer RAM memory.

A number can be given after the ’F’ letter. This number is used to multiple
diagonal elements of the coefficient matrix to make it full rank. Default
value is 1.0001. The format is

F 1.0001

V Packed vector storage

V

Internally the program stores the coefficient matrix in a packed upper
triangle vector format. Thus, the RAM memory need is about half of the
full dense storage. However, computationally this storage form can be
much slower.

A number can be given after the ’V’ letter. This number is used to multiple
diagonal elements of the coefficient matrix to make it full rank. Default
value is 1.0001. The format is

V 1.0001

S Sparse matrix storage

S

Internally the program stores the coefficient matrix as a sparse matrix.
Number of non-zeros is set to be 15 times the size of the coefficient matrix.
A number can be given after the ’S’ letter which is initial guess for the
number of non-zeros in the coefficient matrix. Thus, then the format is

40

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

S 1234567

Only the lower triangle of the matrix is stored. Thus, memory need can
be much less than for the packed vector storage. If the number non-
zeros given is not enough, the program will increase sparse matrix size.
However, this will use more memory than is optimal. Computationally the
sparse matrix storage form is the slowest. In addition, total memory need
depends on the order of equations and can be even higher than for the full
dense storage.

The sparse matrix storage allows numerical filtering of low values in order
to preserve some sparsity. After the format line, a line having three
numbers (these numbers are examples) is given:

1E-5 1E-6 1E-7

where the first number (1E-5) is for the operational zero of diagonal values,
the second number (1E-6) is for the operational zero of off-diagonal values,
and the last value (1E-7) is matrix sparsity value. Often these values are
the same.

The three values have two purposes. First, these values are used to detect
singularities in the coefficient matrix, i.e., dependencies. Singularity detec-
tion can help making the computations more reliable because rounding
errors due to almost zero values are not propagated. Second, the values
allow preserving some sparsity in the matrix. The operational values mean
that when during inversion calculations absolute value of added element
is less than operational value, the value is not added to the coefficient
matrix. Too high operational value leads to too high approximation of
computations. The matrix sparsity value is used to make a matrix element
value zero when absolute value of an element is less than the sparsity
value. Thus, the operational zero values are used to effectively zero values
calculated during inversion calculations but the sparsity value is used to
neglect elements for these computations even before these computations
are made.

The operational zero and sparsity values are ways to increase sparsity in
the coefficient matrix during computations. The higher the values given
the more approximations are used in the computations. Note that none of
these values affect during making of the coefficient matrix.

After the matrix format information has been given, name of the file having diagonal
values of the genetic relationship matrix is asked. The file has format:

<ID code> <Diagonal value>

For example, diagonal of the pedigree-based relationship matrix for animal i is 1 + Fi

where Fi is inbreeding coefficient of animal i.

An example of an exa99 option file:

F
Adiag.dat

Full dense storage format and diagonal of relationship matrix is in file Adiag.dat.

41

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

For sparse matrix storage the command lines can be:

S 1234567
1E-5 1E-6 1E-7
Adiag.dat

6.2.2 Exa99 output files
The output files have the same setup as when solving the mixed model equations.
Structure of the output files depends on the model. Therefore, explanation of the
content of those files is given in the printout of the particular run of exa99.

ACCani PEV and accuracies for animal effects.

SEfix Standard errors for all across blocks fixed effects.

SEfnn Standard errors for the nth within blocks fixed effect. E.g., SEf02 is the
solution file for the 2nd within block fixed effect.

PEVrnn Prediction error variance for the nth random effect in the model. E.g.,
PEVr03 is the solution file for the random effects with the random effect
number 3.

SEreg Standard errors for the across whole data regression effects.

42

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

6.3 Reversed reliability approximation
The reliability calculation (of animal model) can be reversed so that from given reliabili-
ties it is possible to approximate weights that would lead back to the same reliabilities.
These weights, considered as effective record contributions (ERC), can be derived
from reliabilities, pedigree, and heritability of the considered trait using reversed Harris
and Johnson algorithm (Harris and Johnson, 1998) in single-trait case, and using
reversed Tier and Meyer (Tier and Meyer, 2004) in multi-trait case.

The reversed reliability approximation can be calculated with apax99 (but not apax99p)
using AccurType 20 (single-trait) or AccurType 40 (multi-trait). The main input param-
eters, the reliabilities, are given to apax99 in a separate file containing two or more
columns: identification numbers and one or more reliabilities:

File containing reliabilities for reversed reliability approximation:
Id1 Reliability1

2 0.15809E-01
4 0.14464
5 0.14379
6 0.11543
8 0.15527
...

...

Note that the ERCs will be calculated just for those animals that are listed in the file.
ERCs of other animals in the pedigree will be set to zero.

A slightly modified ApaX instruction file is used to calculate the ERCs from the given
reliabilities. Other input information, i.e. pedigree and heritability, are either given using
the original MiX99 preprocessor directive file or given directly without the need to use
the MiX99 preprocessor.

NEWBoth the single-trait and the multi-trait reversed reliability estimation are parallelized
using OpenMP. Number of parallel computing threads can be controlled with apax99
command line option -nt. Note that the multi-threaded MiX99 executables located in
the mp subdirectory must then be used.

6.3.1 Single-trait Reversed reliability approximation (AccurType 20)
• AccurType 20 without option p indicates that the original preprocessor directive

file name is given as OriginalDir:

Example apax99 input file of Reversed reliability approximation:
Reliability method (AccurType): Reversed reliability approximation
20

Filename of the reliability information (id and r2s):
id_r2s.dat

Original dir file (OriginalDir): "-" = MiX99_IN.DIR and MiX99_IN.OPT:
-

ERC parameters: tol maxit smallest [h2]
1e-8 100 0.0001

whereas option p indicates that the pedigree filename is given instead of the
original directive filename:

43

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

Example of Reversed reliability approximation using pedigree file directly:
Reliability method (AccurType): Reversed reliability approximation,
p = pedigree file given, no mix99i needed:
20 p

Filename of the reliability information (id and r2s):
id_r2s.dat

Pedigree file:
data/AM.ped

Number of ERC values (and r2s):
1

ERC parameters: tol maxit smallest [h2]
0 0 0 0.3333333333333

In both cases the second line of the input file (MaxNonZ) is replaced by the name
of the file containing the reliabilities.

• If AccurType 20 p is given, number of reliability columns in the reliability file must
be given as the NumBVs line. This also indicates how many ERCs are calculated
for each animal. NumBVs line must be given also for AccurType 20 (without
option p) if there are more than one trait in the model. Note that the traits are
assumed to be independent when using AccurType 20. Use AccurType 40 for true
multi-trait ERCs.

• After the NumBVs line there must be a line containing at least three numbers for
the ERC calculation specific parameters:

– Tolerance: The reversed Harris and Johnson algorithm calculates the ERC
values iteratively. After each step convergence of the iteration is determined
by comparing the two last iterations. Convergence is achieved if the relative
2-norm of the difference is smaller than the given tolerance. Value zero
indicates default value 10−8.

– Maximum number of iterations: If the reversed Harris and Johnson iter-
ation is not converged within the given maximum number of iterations, an
error message is printed to screen, and the program is stopped. Value zero
indicates default value 100.

– Smallest allowed ERC value: Occasionally ERC values tend to become
negative during the reversed Harris and Johnson iteration. In such cases
the ERC value is replaced by the smallest allowed ERC value. Value zero
indicates default value 0.0001.

– Heritabilities (optional): Heritability value for each NumBVs ERC trait or a
single value for all traits. Must be given for AccurType 20 p but can also be
used to replace the heritabilities calculated from the original preprocessor
directive file (AccurType 20 without option p). Zero value indicates default
value 0.5 (with option p) or value calculated from original dir file (without
option p).

• JFilter line can be omitted.

44

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

Calculated ERC values can be obtained from the fourth column of the PEVani file.

6.3.2 Multi-trait Reversed reliability approximation (AccurType 40)
As mentioned, AccurType 20 can be used to calculate ERCs for more than one traits, i.e.
columns in the r2 file. AccurType 20, however, assumes that the traits are independent.
AccurType 40, on the other hand, calculates true multi-trait ERCs.

Currently, only AccurType 40 p is implemented. It is meant to be used independently
without the need to run mix99i first.

For multi-trait reversed reliability approximation ApaX instruction file needs some addi-
tional information:

Example of multi-trait Reversed reliability approximation:
Reliability method (AccurType): Multi-trait reversed reliability approximation
p = pedigree file given, no mix99i needed:
40 p

Filename of the reliability information (id and r2s):
id_r2s.dat

Pedigree file:
data/AM.ped

Number of ERC values (and r2s):
3

G0 file name:
G0.txt

R0 file name:
R0.txt

ERC: tolerc maxit smallest tol_newton maxit_newton
1e-6 100 1e-10 1e-4 20

ERC: tolr2 minit lastit belowit
1e-7 10 0.5 10

• Genetic and residual covariance matrices need to be given in separate files
containing number of traits lines each having number of traits matrix values from
each matrix row. File names of these files are given after the line containing then
number of traits (or ERC values).

• The multi-trait reversed reliability estimation has two nested iterations. The outer
iteration is similar to the single-trait case whereas the inner interation is based on
Newton’s method.

• As the traits can be of different scales, the multi-trait reversed reliability estimation
has two different convergence tolerances. The first tolerance (tolerc) com-
pares the 2-norm of difference of two last iterations similarly as in the single-trait
case. The second tolerance (tolr2) operates on “reliability” values calculated
from the ercs so that the values are better scaled for different traits. Convergence
is achieved when either of the tolerances is exceeded for all traits.

• The estimation of accuracy on the second tolerance (tolr2) is controlled by
additional parameters. The accurary is estimated after atleast minit (outer)
iterations are calculated, proportion lastit of the last iterations are used to

45

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

estimate the accuracy, and last belowit accuracy estimates need to be below
the tolerance (tolr2).

• The inner Newton iteration has its own tolerance (tol_newton) and maximum
number of iteration (maxit_newton).

• Zeros as parameter values use the default values shown in the example above.

46

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

7 Daughter Yield Deviations
The request of daughter yield deviation (DYD) for different dairy cattle studies and
for model validation purposes made it necessary to implement adequate calculation
procedures into MiX99. A general approach for the calculation of DYD is implemented
into MiX99. The calculations follow the method presented in Mrode and Swanson
(2004). For simple models, like single trait animal models, the approach will yield DYD,
which are calculated in the same manner as given in VanRaden and Wiggans (1991).
In case of random regression models, DYD coefficients will be given. These coefficients
can be used in a post-processing procedure to obtain DYD for certain intervals of the
time trajectory, like 305-day yield DYD.

DYDs can be obtained for each bull that has daughters with records. Furthermore, it is
possible to classify within each bull the DYDs by a classification variable. This is useful
for model validation purposes.

Sometimes there is need for yield deviations (YD) or individual daughter deviations
(IDD). Here, an IDD is defined as the YD minus half of the dam’s additive genetic animal
effect. MiX99 provides an option to calculate for each observation that is included in the
analysis the corresponding YD or IDD. The YDs and IDDs will be written to unformatted
files. For instructing MiX99 to calculate YDs or IDDs please see the explanations given
for the VALID option in chapter 4, and about Contents in chapter 5.

7.1 Calculation of daughter yield deviations
This chapter will explain how MiX99 can be instructed to calculate DYD. Instructions
have to be given for the pre-processing and for the solver programs. In case it is desired
to classify the DYDs within sires, additional information will be needed in the pedigree
file.

7.1.1 Pedigree file
The additional information in the pedigree file is required only if DYD should be classified
within sires (optional). A column with the classification variable has to be added to the
pedigree file. This column must be given after the pedigree information (i.e., column 4
or higher) or after the blocking variable code in case blocking of the data is desired (i.e.,
in this case column 5 or higher). The classification code will indicate to which within-sire
class the daughter will be grouped, e.g., the classification code could correspond with
the calving years of the daughters. The classification codes need to be numbered from
one (1) to n within a sire. Some classes may be missing within a sire. For animals
without observations in the data file a zero (0) is given.

7.1.2 MiX99 instruction file
Instructions specific to the calculation of DYD have to be given on two instruction lines.
First, on the PEDFILE instruction line an integer value has to be provided after the
pedigree filename. There are two alternatives available. Alternative 1: specifying a
zero (0) will instruct MiX99 to calculate DYDs for each bull with daughters that have
observations. Alternative 2: Specifying the column number of the pedigree file that
contains a within-sire classification will instruct MiX99 to calculate for DYD for each class
within sire. Second, on the PRECON instruction line a block diagonal preconditioner
matrix (option b) must be defined for the additive genetic animal effect.

47

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

7.1.3 MiX99 solver option file
Instruction specific to the calculation of DYD have to be given on two option lines. The
option d must be specified on the VALID option line. This is followed by a FACTOR
option line which specifies the model factors that are included into the DYD. Please see
Daughter Yield Deviations in chapter 4.1, for specifying the FACTOR option line.

7.2 Solution files for daughter yield deviations
Daughter yield deviations are written to a file named Soldyd. The structure of the file
is similar to that one of the file Solani. The structure of the file is model-specific and
the solver will write an explanation to standard output. In case of a random regression
model, DYD regression coefficients are given. Number and order of the coefficients
is the same as for the animal effect coefficients in Solani. The DYD coefficients are
followed by as many integers as there are coefficients for a particular DYD function. The
order of these integers is the same as the order of the DYD coefficients, and the integers
may have a value of one or zero. Ones indicate that the corresponding coefficients
were estimable. This is important for multi-trait or random regression models, where
it might be not possible that some DYD functions are not defined. For instance, given
a model specifies that first and second lactation observations are different traits and
all daughters of a sire have first lactation observations only. Then, there is no DYD
function available for the second lactation.

For random regression models, the same covariables as applied for the additive genetic
animal effect are also applied to the DYDs. Note: A bull’s DYD function is only defined
for the time interval in which the bull’s daughters have observations. An extrapolation of
the function beyond this time interval may yield absurd results.

7.3 Example
The example explained in chapter 7.3 of the Technical reference guide for MiX99
pre-processor will be modified for the calculation of DYD. Modifications are in bold.

CLIM command file:
TITLE " RANDOM REGRESSION, L.Schaeffer & J.Dekkers (1994)"

DATAFILE example3.dat
INTEGER HTD Animal
REAL Covar_1 Covar_2 Milk

DATASORT BLOCK=HTD PEDIGREECODE=Animal

PEDFILE DYD example3.ped
PEDIGREE G am

PARFILE variance_comp.ex3

PRECON b d f
WITHINBLOCKORDER G HTD

MODEL
Milk = Lact_curve(Covar_1 Covar_2) HTD G(1 Covar_1 Covar_2 | Animal)

MiX99 instruction file:
TITLE:

RANDOM REGRESSION, L.Schaeffer & J.Dekkers (1994)
INTEGER:

HTD Animal

48

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

REAL:
Covar_1 Covar_2 Milk

TRAITS:
1

TRGRP:
1 -

DATASORT: block_code, relationship_code (single residual var.)
1 2

FIXRAN: number of fixed and random factors in the model
1 3

MODEL: trait_group trait weight herd-test-day gamma0 gamma1 gamma2
1 3 - 1 2 2 2

WITHINBLOCKORDER: order of effects within blocks
2 1 1 1

RANDOM: gamma0 gamma1 gamma2
1 1 1

RELATIONSHIPS: number: gamma0 gamma1 gamma2
3 1 1 1

REGRESS: number beta1 beta2 herd-test-day gamma0 gamma1 gamma2
6 1 2 cl cl 1 2

COMBINE:
n

PEDIGREE:
am

DATAFILE:
example3.dat

VAR:
2 3 f

MISSVA:
0.0

SCALE:
n

PEDFILE: filename, a zero for calculation of DYD
example3.ped 0

PARFILE:
variance_comp.ex3

TMPDIR:
.

RANSOLFILE: animal effect
y

SOLUNF:
n

PRECON: block diagonal preconditioner for the animal effect in WpW
b d f

PARALLEL: number of processors used by the solver program
1

COMMONBLOCKS:
0

MiX99 solver option file:
RAM RAM demand: H=high

H
STOP Max.iter, Tolerance, Convergence criterion (Cr), Force

1000 1.0e-7 r f
RESID Residuals calculation

N
VALID D for calculation of DYDs

D
FACTOR: beta1 beta2 herd-test-day gamma0 gamma1 gamma2

0 0 0 1 1 1
VAROPT Variance options for VCE, PEV, HV

N
SOLTYP Solution file options (N,Y,A,H)

Y

49

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

Description of the Soldyd file written by the solver to standard output:
.
.

Daughter Yield Deviations

First 50 Solutions

Sire Class N-Daug. N-Rec. Effect Trait Solution Def.
9 1 2 9 1 1 -2.98764 1
9 1 2 9 2 1 0.488173E-01 1
9 1 2 9 3 1 0.284341 1

10 1 2 9 1 1 3.74280 1
10 1 2 9 2 1 -0.433969E-01 1
10 1 2 9 3 1 -0.516160 1
11 1 2 5 1 1 -1.03777 1
11 1 2 5 2 1 0.841567E-02 1
11 1 2 5 3 1 0.498087E-01 1

"Soldyd"-File: Daughter Yield Deviations for Sires

Column | Description

1 Code of Sire
2 Within Sire Classification
3 Number of Daughters
4 Total Number of Records
5 DYD Solution / Coefficient : Factor 1 Trait 1
6 DYD Solution / Coefficient : Factor 2 Trait 1
7 DYD Solution / Coefficient : Factor 3 Trait 1
8 DYD is defined (yes=1,no=0): Factor 1 Trait 1
9 DYD is defined (yes=1,no=0): Factor 2 Trait 1

10 DYD is defined (yes=1,no=0): Factor 3 Trait 1
.
.

50

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

8 Non-linear models
Two non-linear models are implemented into MiX99. Estimation of categorical variables
is implemented by the generalized linear mixed model with the probit link function, and
estimation of the growth curve models is implemented by linearization of non-linear
Gompertz function model using second order Taylor series expansion. Use of these
models is still exiguous and extensions of the MiX99 program for these models are
therefore considered as test-versions. There is no possibility to give the CLIM command
file for these models yet. Instead, the MiX99 instruction file should be made.

8.1 Threshold-model
Prediction of breeding values is possible for models with one categorical and several
linear traits. Models are allowed to have missing traits and unequal design matrices for
traits. Thresholds can be estimated or set to be known. (Co)variance components have
to be known and residual variance of the categorical trait should be set to one.

8.1.1 Instruction file for mix99i
The categorical trait is defined by giving Tn, where n is a number of thresholds, on its
own column between first and second parameters in the MODEL line. For example, for
a binary trait (recorded as 1 and 2) option T1 needs to be marked. In case of a multiple
trait model, the linear traits are defined first (see example 7.9). When the threshold
model is defined, one or two additional instruction lines must be given right after the
MODEL line.

First additional line defines the method that is used to analyze the threshold models.
There are two options: em option defines the Expectation Maximization algorithm
(EM) (Gilmour and Thompson, 1998) and nr option defines the Newton-Raphson
algorithm (NR) (Janss and Foulley, 1993; Hoeschele, Tier, and Graser, 1995). By
default, thresholds are estimated simultaneously. Optionally, additional characters “ft”
can be specified to indicate fixed threshold values. Thus, a new line must follow, where
the threshold values for categorical trait are defined. This line should contain as many
real numbers as defined for the categorical trait in the MODEL line.

8.1.2 Stopping criterion file for mix99s
Solving of the threshold-model is a non-linear problem and iterative in two levels.
Therefore, the STOP line changes to have five entries: an integer, a real value, a
character, an enforcing character “f” and an integer. Now the first integer value gives
the maximum number of PCG-iterations within each NR- or EM-round (default is 100
or number of equations in the MME) and the last integer value gives the maximum
number of NR- or EM-rounds (default is 5000). Analyze is set to be converged when
only one PCG iteration round is needed within the NR round, or less than 10 PCG
iteration rounds are needed within the EM round.

There should be insignificant differences in solutions between two algorithms, but the
EM algorithm is generally slower to converge than NR algorithm. NR algorithm is
critical to attain good solutions within the rounds. Increasing the maximum number of
PCG-iterations within each round may lead to fewer NR rounds and in that way faster
convergence finally. Instead, EM algorithm will need reasonable solutions to certain
extent within each EM round, after which increase in accuracy will not improve the total
convergence.

51

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

8.1.3 Solution files
Solution files are equal to the linear mixed model case. When thresholds are estimated,
these are printed in the output and in the end of the Solfix-file (with factor name
Threshold and factor number 0).

8.1.4 Example
Example 7.9 in Technical reference guide for MiX99 pre-processor contains the instruc-
tion file for bivariate model with one binary trait.

8.2 Gompertz-model
A multiplicative Gompertz model (i.e. ln(y) = ln(a)−b∗exp(−k ∗ t)+e) as demonstrated
in Vuori et al. (2006a); Vuori et al. (2006b) is implemented in MiX99. Thus, log-
transformation is needed for original observations y, although solutions are for three
parameters a, b and k. All traits introduced in the analysis must currently have the
non-linear Gompertz form. Models are allowed to have missing traits and unequal
design matrices for traits. (Co)variance components could be known or estimated
simultaneously between each round by the covariance component estimation program
which allows linear random regression models.

8.2.1 Instruction file for mix99i
Model specification for non-linear model reminds the specification of regression models,
although few additional features and restrictions compared to model specification for
linear random regression traits exist. The two most important lines in the instruction file
therefore are MODEL and REGRESS lines which will be discussed below.

Non-linear Gompertz-model traits are defined in the MODEL line by giving the character
G on its own column between first and second parameters. Effects in the MODEL lines
are defined as many times as number of parameters of the Gompertz function the effect
is related to (i.e. 1-3 times for Gompertz function, see example 7.8). However, for all
traits, at least one common fixed effect needs to be related to all three parameters.
This effect is defined first in the MODEL line, and further, is defined to be across-block
effect (see WITHINBLOCKORDER). I.e., dash (-) must be specified for the first effect
in WITHINBLOCKORDER line. If many such effects occur, you may define effect with
smallest number of levels first.

All factors in the MODEL line must be considered as covariables read from the separate
file, i.e., covariable columns have to be specified with a preceding "t" on the REGRESS
line(s). Real input column for covariable indicates the parameter of the Gompertz
function the effect is related to: t1 for mature weight, t2 for relative initial weight and
t3 for maturation rate. An additional column for time is needed at the end of each
REGRESS line. This is not counted in the number of regression effects specified first in
the REGRESS line.

In consequence, a covariable file is always needed. The index connecting an observa-
tion and a set of covariables is usually time of measurement but the rest of the file differs
from those to linear random regression models. Because the Gompertz function has
three parameters, first three covariable columns should contain only ones. After these,
a column with the time variable is set. This can also be a scaled time if needed. For
example, select time scaling so that estimate for maturation rate is approximately one.
The number of columns needed in covariable table is therefore at least 4, i.e., number
of parameters in the non-linear Gompertz function plus one for the time dependent.

52

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

Addition to MODEL and REGRESS lines, restrictions on PRECON and DATASORT
lines should be mentioned: (1) Diagonal (d) must be defined for all preconditioners and
(2) multiple residual (co)variance matrices are not possible for non-linear Gompertz
function models.

Note: The iterative algorithm for non-linear Gompertz function model is implemented
so that a restart of analysis is needed. For this reason the user must define the
convergence of the iterative process by itself. However, this enables the possible
update of new variance components for each iteration round by calling mix99i first.
Therefore, both options in the SOLUNF line are possible, but restart of mix99s is
possible with option n as well in case the covariance components are known and won’t
change from round to round. The case when estimation of variance components is
done simultaneously is covered in the section of stopping criterion file.

8.2.2 Stopping criterion file for mix99s
Stopping criterion file is defined as for linear traits. Now the stopping criterion is for
BLUP solutions within each round. To decide the final convergence of the iterative
process, user must define the convergence by itself over repeated BLUP analysis. One
option would be to append the solutions after each round to another file which is studied
for converge of solutions.

It is possible to estimate variance components simultaneously between each round by
another analysis. This is allowed by the option d in SOLTYP line, which will produce
binary and ascii files named DMUINP and DMUINP.dat, respectively. There is a
historical reason for naming files according to DMU, but any other suitable program can
be used also. These files include the pseudo data, i.e., linearized observations and
covariables, among others. Missing observations and covariables in DMUINP and
DMUINP.dat files are coded as -99999. First within these files are integer columns
and then real columns. Integer columns contain within and across block fixed effects
and random non-genetic and genetic effects, in this order. After these there is the
column with zeros. First real columns contain linearized observations for each trait,
after which linearized covariables for each three Gompertz function parameters by
traits follow. Last real column contain ones. Note: Good knowledge and carefulness is
needed to estimate the covariance components accurately.

8.2.3 Solution files
Program gives solutions for Gompertz-model parameters (i.e. a, b and k) defined for
each effect. Because model mimics linear random regression model, solutions files are
equal to the linear random regression model case.

8.2.4 Example
Example 7.8 in Technical reference guide for MiX99 pre-processor contains the instruc-
tion file for Gompertz function.

53

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

9 Estimation of variance components
For prediction of breeding values, variance components need to be known. An imple-
mentation of the Monte Carlo (MC) Expectation Maximization (EM) Restricted Maximum
Likelihood (REML) (MC EM REML) algorithm for the estimation of variance components
(Matilainen et al., 2012) is available in the mix99s solver. The algorithm applies a
resampling procedure to estimate prediction error variances (PEV) needed in the EM
REML equations. Estimates of location parameters are obtained from the real data
within each REML round, whereas PEV is obtained within each REML round by re-
peatedly simulating data and estimating the location parameters of the simulated data.
This enables calculation of PEV without inversion of the coefficient matrix, leading to
memory requirements equal to the solving of the mixed model equations. Although EM
algorithm is known to be slow in convergence, the MC EM REML makes REML feasible
for large data sets and complex models for which the inversion of the coefficient matrix
would be too memory and time consuming.

The implementation for the variance component estimation supports the majority of
models possible in MiX99 including GBLUP and SNP-BLUP models. However, singel-
step models and models that include an effect with an autoregressive correlation
structure as well as threshold models and Gompertz models are not supported yet.

9.1 Running MC EM REML
Estimation of variance components requires execution of two programs. First, the
pre-processor program mix99i is executed either by using CLIM command file or
MiX99 instruction file with initial values for the variance components. Then, the solver
program mix99s is executed with specific instructions in the solver option file (see
VAROPT option line in chapter 4.1).

Because models used in MC EM REML estimation are usually complex and analyses
time consuming, it is also possible to change some of the iteration parameters to be
more suitable during the execution of the solver mix99s. This can be done by using
external file ITER. Both the parameters regarding breeding value estimation and the
parameters regarding variance component estimation can be updated.

If the estimation is wanted to be stopped beforehand, external STOP file will do it in a
controlled way.

In case the estimation has stopped or ended, but more REML rounds is needed,
the estimation can be continued by starting solver mix99s without running the pre-
processor mix99i first. In that case maximum number of iterations for variance
component estimation is marked as negative value in the STOPE line of the solver
option file. This value is the new total number of REML rounds, i.e., value should be
larger than the REML rounds in the previous run. For example, when estimation has
stopped on the REML round 1000 but you want to make another 1000 rounds, then
the new maximum number of iterations for estimation of variance components is -2000.
The estimation, including REML rounds, will start from what they ended (last row in the
REMLlog file) and estimates from the new REML rounds will be appended to REMLlog
file as well. Other PCG and REML iteration parameters can also be changed for the
continued estimation.

The variance component estimation can also be restarted by performing another

54

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

estimation using the previously estimated variance components as the initial values.
The estimated variance components from the parfile need to be first copied to the
file specified in PARFILE line of the instruction file (and possibly resfile to RESFILE).
Remember also to save the old REMLlog file to another name to keep old estimates
available. Other estimation parameters can be modified at this stage, too. Then, the
pre-processor program mix99i is run to restart the estimation from the new initial
values of the variance components before running the solver mix99s for the restarted
estimation.

How MiX99 works to estimate variance components will be explained in more detail in
the following.

9.2 File with starting values of (co)variance components
The file with the starting values for the (co)variance components must be in the same
format as described in the chapter File with (co)variance components of the Technical
reference guide for MiX99 pre-processor . The file will be specified in the PARFILE
instruction line of the CLIM command file or MiX99 instruction file. The same rules
apply also for a file with starting values for the multiple residual (co)variance matrices in
the case that a model with multiple residual (co)variances is applied (optional).

9.3 MiX99 instruction file
There is no need to give a specific instruction regarding variance component estimation
neither in the MiX99 instruction file, nor in the CLIM command file. Because pre-
processor mix99i will at the beginning form preconditioner matrices with the initial
values for the variance components, updating of the matrices with the most current
variance component estimates was found crucial to enhance convergence. In the
currently implemented version of the variance estimation module the mix99s solver will
automatically, in certain REML round intervals, make a system call to start a mix99i
pre-processing run. Therefore MiX99 pre-proprocessor stores its instructions directives
(.DIR) and possible command line options (.OPT) automatically to files MiX99_-
IN.DIR and MiX99_IN.OPT, respectively. So, during the preconditioner update these
files need to be available and contain the information from the original pre-processor run.
Alternatively, MiX99 instruction file named as MiX99_DIR.DIR can be used to specify
the pre-processor directives for the preconditioner update. This file is automatically
created by the pre-processor when a CLIM command file is used for the model. File
MiX99_DIR.DIR contains the same information in instruction file format.

Updating of the preconditioner matrices is done every 10th REML round during the
first 100 REML rounds and on every 100th REML round thereafter. If the updating was
unsuccessful, the text

Updating of preconditioner failed!

is printed to the standard output and further instructions are given to check for additional
error information:

See files MiX99_DIR.LOG and WARNING.log.

If pre-processor directives for the preconditioner update could not be found, this in
indicated by error message:

55

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

Either MiX99_IN.DIR or MiX99_DIR.DIR file is needed as directive file
for mix99i.

9.4 MiX99 solver option file
The solver mix99s is instructed to estimate variance components by specifying option
e on the VAROPT option line and by giving information on three additional option
lines STOPE, SEED and MIX99PATH thereafter. Specifying the information on three
additional option lines is explained in chapter 4.1 regarding the option e. If some of the
given parameters for the STOPE line are found to be poor during the execution of MC
EM REML, see Contents for different possibilities to change these.

9.4.1 Number of data samples
The second parameter given on the STOPE line is number of data samples. This is
a number of data samples generated and analyzed within a one round of stochastic
MC EM REML. The number of analyzed data samples within a REML round will
affect the accuracy of the prediction error variance estimates. Increasing the number of
samples will reduce the Monte Carlo error associated with the prediction error variances.
However, the size of Monte Carlo error depends also on the model specified and on the
amount of data and animals included in the analysis.

We observed that convergence of the MC EM REML algorithm is not affected by the
number of samples specified and for many models even one sample per REML round
is sufficient. The number of specified data samples is critical, because each additional
data sample will require one additional BLUP model to be solved within a REML round,
which increases the total time of the REML analysis.

Our experiences so far suggest that analysis with large amount of data and sufficient
number of animals (e.g. test-day data with observation from over 10 000 animals) needs
only one Monte Carlo sample per REML round. When amount of data is rather small in
relation to the number of parameters to be estimated, a higher number of samples (5,
10 or 20) might be more appropriate. For some analyses with small amount of data,
software using non Monte Carlo REML implementation can be more suitable.

9.4.2 Determining convergence of REML parameter estimates
There is a need for a convergence indicator which accounts for the characteristics that
parameter estimates are associated with Monte Carlo noise. The currently implemented
convergence indicator is calculated from the vectors containing predicted variance
component estimates at two points x−1 and x (ŝ(x−1) and ŝ(x)), where the prediction
is based on estimated variance components obtained during the latest x EM rounds
(θ̂(k−x+1), . . ., θ̂(k)), and where a predicted estimate for each variance parameter is
calculated as ŝi(x) = α̂i + β̂ix. The size of x is chosen to be large enough to minimize
the Monte Carlo noise in the convergence indicator, which is calculated for REML round
k:

cc
(k)
E =

(
ŝ(k)(x)− ŝ(k)(x− 1)

)T (
ŝ(k)(x)− ŝ(k)(x− 1)

)
(ŝ(k)(x))

T
(ŝ(k)(x))

After cc(k)E has reached a value smaller than the specified convergence criterion (see
STOPE option line), the REML analysis will perform a sequence of 30 additional MC EM
REML rounds, which will reduce the Monte-Carlo error from the parameter estimates
by using weighted average with decreasing weights for latest solutions. Depending on

56

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

the analysis, we have found that values between 10−8 to 10−9 are suitable convergence
limits.

9.4.3 Keeping certain variance components fixed
For some analyses it might be desired that certain pre-defined variance components
(starting values) remain unchanged during the MC EM REML analysis. The instructions
about which variance component parameters are kept fixed are given in the MiX99
solver option file.

For this option the three entries e f n have to be specified on the VAROPT option line,
where f instructs mix99s to keep some parameters unchanged and the third entry n
is an integer value which tells how many parameters should remain unchanged. This
option will require the inserting of n additional lines right after the VAROPT line. Each
line specifies one parameter that should remain unchanged. A line consists of three
integers, where the first integer is the random effect number followed by the row-column
combination. In practice, you can copy the corresponding line from the parameter file
excluding the variance component parameter itself.

In case multiple residual variance matrices are applied, four integers need to be
defined for residual variance component parameters to be unchanged. The first integer
number is equal to the random effect number of the residual effect. The second
integer gives the residual variance class number. This is equal to the first number
on the corresponding parameter line in the file with multiple residual (co)variances
(see chapter 3.4 in Technical reference guide for MiX99 pre-processor). The last two
integers specify the row-column combination.

9.4.4 MC EM REML for MACE
As a special case is the estimation of variance components for a MACE model. Variance
component estimation of the MACE model can be done by keeping the residual variance
fixed at unity and applying weights, wij = EDCij/(λjσ

2
gj
) with λj = (4 − h2

j)/h
2
j , for

deregressed breeding values for bull i in different countries j (Tyrisevä et al., 2011).
However, estimation of variance components will change genetic variances σ2

gj
that

were originally used in the calculation of the weights. Therefore, it will be more accurate
to update the weights after new estimates of genetic variances are available. MiX99 can
do this updating of weights for the MACE model automatically after each REML round
when option ei instead of just e is specified for estimation of variance components on
the VAROPT option line.

9.5 Standard errors for REML parameter estimates
MiX99 is capable to calculate standard errors for the variance component estimates
at the last REML round. Approximated standard errors are based on variances over
sampled gradients as explained for NR-method in Matilainen et al. (2013). They are
calculated automatically when the number of data samples is at least 10. Adequate
number of samples depends on the data and model, but 50 or more samples is
recommended.

As using number of data samples less than 10, even a single one, is much faster,
one can first start the estimation using the smaller number of samples. Then, after
the convergence of the variance components, one additional REML round can be
executed afterwards. This can be done in different ways. Either the estimation of
variance components can be continued or another variance component estimation can

57

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

be started using the estimated variance components as the initial values. In both cases
the number of samples can be set to larger than 10, for example 50, in the solver option
file so that the standard errors are calculated.

Approximated standard errors, as well as all covariances of REML estimates in the
information matrix, are printed after the last REML round. Standard errors are printed to
the vceSE, and information matrix is printed to the vceI. The vceSE has four columns.
It resembles the parfile, but has approximated standard errors in the fourth column.
If model has multiple residual variance matrices, standard errors for all residual classes
are printed after the first residual class (like in REMLlog). Example about vceSE is for
one trait with two random effects and residual:

vceSE:
1 1 1 208.134
2 1 1 272.508
3 1 1 59.4737

The information matrix vceI has seven columns. The first three integers indicate the
first parameter and the next three integers indicate the second parameter. The seventh
column has the covariance between the two parameters. For example, for the case
above vceI is

vceI:
1 1 1 1 1 1 43319.7
2 1 1 1 1 1 -44735.8
2 1 1 2 1 1 74260.4
3 1 1 1 1 1 -1222.08
3 1 1 2 1 1 485.008
3 1 1 3 1 1 3537.12

where the first line has value for the first random effect, the second line has value
between the first and second random effect, the third line has value for the second
random effect, and so on. Because the information matrix contains a value for each
combination of the (co)variance parameters, it can be become very large.

Consider a model with six (co)variance parameters. The file for standard errors has six
lines and is

vceSE:
1 1 1 98919.7
1 2 1 3534.95
1 2 2 155.895
2 1 1 82881.3
2 2 1 2914.91
2 2 2 126.006

The information matrix contains 21 elements:

vceI:
1 1 1 1 1 1 0.978512E+10
1 2 1 1 1 1 0.310664E+09
1 2 1 1 2 1 0.124959E+08
1 2 2 1 1 1 0.987140E+07
1 2 2 1 2 1 483421.
1 2 2 1 2 2 24303.1
2 1 1 1 1 1 -0.755926E+10

58

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

2 1 1 1 2 1 -0.238666E+09
2 1 1 1 2 2 -0.741774E+07
2 1 1 2 1 1 0.686931E+10
2 2 1 1 1 1 -0.236382E+09
2 2 1 1 2 1 -0.937649E+07
2 2 1 1 2 2 -355953.
2 2 1 2 1 1 0.216383E+09
2 2 1 2 2 1 0.849670E+07
2 2 2 1 1 1 -0.737152E+07
2 2 2 1 2 1 -356791.
2 2 2 1 2 2 -17917.6
2 2 2 2 1 1 0.667658E+07
2 2 2 2 2 1 319118.
2 2 2 2 2 2 15877.5

For model with 42 (co)variance parameters, the information matrix contains as much as
903 elements.

9.6 Solution files for variance components
REMLlog Contains the estimates of variance components at every REML round. The

first column in the file specifies the REML round and the second column
the convergence criterion value of that round. After the second column
as many columns follow as there are variance component parameters to
be estimated. The order of the lines is as following. The first three lines
in the REMLlog file describe the order of the parameter columns. The
first line has the random effect number and the second and third lines the
row-column combination for the particular parameter of a random effect.
Hence, the first three lines are identical with the first three columns in
the file with the (co)variance components. If multiple residual variance
matrices are defined, then their variance class number is added to the
end of the file. The fourth line contains the initial parameter values used.
The following lines contain the estimates of variance components at each
REML round.

parfile Contains the latest solutions of variance component estimates. The struc-
ture of the file is the same as in the parameter file of the PARFILE instruc-
tion line.

resfile Contains the latest solutions of residual variance component estimates
when multiple residual variance matrices are defined. The structure of
the file is the same as in the multiple residual variance matrices file of the
RESFILE instruction line.

vceSE This file will be produced when approximated standard errors for REML
parameter estimates are calculated. Resembles parfile. First three
integers indicates the random effect number and row-column combination
of that matrix. Fourth column contains the real value and is approximated
standard error. If the model has multiple residual variance matrices, these
are numbered as in REMLlog and printed right after the standard errors
for other random effects.

vceI This file will be produced when approximated standard errors for REML
parameter estimates are calculated. The file has seven columns. Seventh
column has the value of the information matrix for each pairwise parameter

59

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

combination. The first parameter is indicated by the first three integers
as in vceSE, and the second parameter is indicated by the next three
integers as in vceSE.

9.7 Example
Schaeffer has written a technical note on maximum likelihood estimation of variance
components (Journal of Dairy Science, 1976). It contains a small example data in
Table 1 for milk yields of first lactation daughters of five dairy sires in two herds. The
model contains sire groups and herds as fixed effects and uncorrelated sires as random
effects. In the following the CLIM command file for the mix99i pre-processor and the
MiX99 solver option file for the mix99s solver program, as well as the listing in the
standard output of the solver are given.

CLIM command file:
TITLE data in technical note of Schaeffer (Table 1, J. Dairy Sci., 1976)

DATAFILE data.dat
INTEGER group herd sire
REAL yield

PARFILE data.par

PEDFILE data.ped
PEDIGREE sire sm

MODEL
yield = group herd sire

The “MiX99_DIR.DIR” file created for mix99i:
TITLE data in technical note of Schaeffer (Table 1, J. Dairy Sci., 1976)
data in technical note of Schaeffer (Table 1, J. Dairy Sci., 1976)
INTEGER group herd sire
group herd sire
REAL yield
yield
TRAITS

1
TRAITGRP
1 -

datasort: Block_code, Relationship_code
- -

FIXRAN: Numbers of fixed and random factors in the model
2 1 0 0
MODEL: Subgr. Trait Weight ... model factors ...
1 1 - 1 2 3

WITHINBLOCKORDER: Order of effects within blocks
- - 1

RANDOM
1

RELATIONSHIPS
1 1

REGRESS
3 cl cl cl

COMBINE
n
PEDIGREE
sm
DATAFILE data.dat
data.dat
VAR

3 1 f

60

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

MISSVA
0

SCALE
n
PEDFILE data.ped
data.ped
PARFILE data.par
data.par
tmpdir
.

noransol
y

SOLUNF
n
precon
b b # Default is block

parallel: Number of processors used by the solver program
1 # Default: no parallel computing

COMMONBLOCKS: Number of blocks in common area for parallel computing
0

MiX99 solver option file:
RAM: RAM demand: H=high

H
STOP: Max.iter, Tolerance, Convergence criterion, Enforce

5000 5.0e-5 d f
RESID: Residuals calculation

N
VALID: Model validation

N
VAROPT: Variance options: VCE

E
STOPE: REMLrounds, nSamples, Conv.value VCE, Conv.value BLUP samples

1000 5 1.0e-9 5.0e-5
SEED: Type of seed for the random number generator

R
MIX99PATH:

/share/apps/
SOLTYP: Solution file options

Y

At the following are three excerpts of standard output of MC EM REML evaluation: at
the beginning, when the convergence criterion of MC EM REML is reached, and at the
end. Comments after # are added.

Parts of standard output file of the solver:
.
.
.

MiX99_SOLVE: Start of MC EM REML iteration Time: 13:11:00.3 18.11.2019

MiX99_SOLVE: Start of Iteration Time: 13:11:00.3 18.11.2019

Iteration Statistics

Convergence Indicators

61

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

ROUND CA CR CM CD MAX.CHA.

------- ------------ ------------ ------------ ------------ ------------
Solution vector will be initialized to be zero

rhs’ * rhs = 14014.6999754906
animal rhs’ * rhs = 2345.34000116348

--
0 1.000 1.000 1.000 0.000 0.000
1 0.8156E-01 0.4002E-01 0.4602E-01 1.000 1.675
2 0.4518E-01 0.2589E-01 0.3458E-01 0.2209 -0.6545
3 0.3199E-01 0.2202E-01 0.2617E-01 0.5391 -1.081
4 0.8213E-02 0.9357E-02 0.9692E-02 0.8242E-01 -0.3068
5 0.1470E-02 0.7315E-03 0.1014E-02 0.3065E-01 -0.8918E-01
6 0.6997E-03 0.4073E-03 0.4696E-03 0.4586E-02 -0.2069E-01
7 0.4954E-10 0.2027E-10 0.2669E-10 0.1223E-01 -0.3061E-01
8 0.4274E-12 0.3967E-12 0.4006E-12 0.8750E-10 -0.2393E-09
9 0.1452E-16 0.1267E-16 0.1258E-16 0.3625E-12 0.6506E-12

CD convergence criterion 0.5E-4 achieved in 9 iterations.
Solutions have converged according to CD criterion. # Convergence of real data

MiX99_SOLVE: End of Iteration Time: 13:11:00.3 18.11.2019

9 0.1185E-15 0.9644E-16 0.1095E-15 0.4962E-13 0.2709E-13
9 0.4008E-15 0.5995E-15 0.5419E-15 0.3275E-14 0.1915E-14
9 0.2205E-15 0.1849E-15 0.1966E-15 0.2568E-13 0.1618E-13
9 0.2994E-15 0.3145E-15 0.2893E-15 0.7103E-14 -0.5329E-14
9 0.7586E-16 0.1449E-15 0.1133E-15 0.1982E-15 -0.3053E-15

Convergences of five simulated data sets
REML ROUND 1 CONV Cd 0.000 # REML convergence indicator

.

.

.

MiX99_SOLVE: Start of Iteration Time: 13:11:02.7 18.11.2019

Iteration Statistics

Convergence Indicators

ROUND CA CR CM CD MAX.CHA.

------- ------------ ------------ ------------ ------------ ------------

Solution vector will be initialized with old solutions # Solutions from the
previous round used

rhs’ * rhs = 2477845.52138173
animal rhs’ * rhs = 414663.904911524

--
0 0.1222E-02 0.5000E-03 0.8504E-03 0.000 0.000
1 0.3017E-04 0.1590E-03 0.1578E-03 0.3780E-02 -0.1741E-01
2 0.5373E-04 0.4800E-04 0.5064E-04 0.4383E-03 -0.1848E-02
3 0.3687E-04 0.2310E-04 0.2650E-04 0.9638E-04 -0.3164E-03
4 0.9305E-04 0.5960E-04 0.6905E-04 0.4135E-03 0.1130E-02
5 0.8204E-04 0.4137E-04 0.5711E-04 0.8518E-03 0.2677E-02
6 0.3515E-05 0.2416E-05 0.2596E-05 0.6819E-03 0.2034E-02
7 0.8988E-05 0.3690E-05 0.5059E-05 0.1978E-03 -0.5310E-03
8 0.1870E-16 0.1799E-16 0.1791E-16 0.3922E-04 -0.1523E-03
9 0.1120E-17 0.9135E-18 0.1009E-17 0.1369E-16 0.5551E-16

CD convergence criterion 0.5E-4 achieved in 9 iterations.
Solutions have converged according to CD criterion. # Convergence of real data

MiX99_SOLVE: End of Iteration Time: 13:11:02.7 18.11.2019

62

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

9 0.3023E-15 0.2992E-15 0.2675E-15 0.1355E-12 0.3701E-13
9 0.4977E-14 0.7166E-14 0.6355E-14 0.7685E-13 0.4430E-13
9 0.8280E-15 0.1071E-14 0.1022E-14 0.1668E-12 -0.3136E-13
9 0.8386E-14 0.1256E-13 0.1209E-13 0.3144E-13 -0.8604E-14
9 0.6958E-15 0.1165E-14 0.8450E-15 0.5171E-12 -0.2358E-12

Convergences of five simulated data sets
REML ROUND 321 CONV Cd 0.9572E-09 # REML convergence indicator

REML convergence criterion 0.1E-8 achieved on round: 321
- Additional 30 REML rounds will be performed to reduce variation
in variance component estimates.

.

.

.

MiX99_SOLVE: Start of Iteration Time: 13:11:02.9 18.11.2019

Iteration Statistics

Convergence Indicators

ROUND CA CR CM CD MAX.CHA.

------- ------------ ------------ ------------ ------------ ------------

Solution vector will be initialized with old solutions # Solutions from the
previous round used

rhs’ * rhs = 2691132.89311232
animal rhs’ * rhs = 450357.241589269

--
0 0.1545E-03 0.6321E-04 0.1075E-03 0.000 0.000
1 0.1501E-05 0.2075E-04 0.2054E-04 0.4940E-03 -0.2280E-02
2 0.7044E-05 0.5680E-05 0.5891E-05 0.5764E-04 -0.2421E-03
3 0.2437E-05 0.2368E-05 0.2522E-05 0.9361E-05 0.2672E-04
4 0.6524E-05 0.3228E-05 0.4053E-05 0.1273E-04 -0.4024E-04
5 0.8385E-05 0.4114E-05 0.5907E-05 0.7934E-04 0.2502E-03
6 0.3123E-06 0.2126E-06 0.2289E-06 0.1667E-03 0.5088E-03
7 0.1162E-05 0.4770E-06 0.6565E-06 0.2334E-04 -0.6286E-04
8 0.1057E-16 0.1040E-16 0.1045E-16 0.7990E-05 -0.2768E-04
9 0.4813E-18 0.2255E-17 0.2079E-17 0.6230E-17 0.2776E-16

CD convergence criterion 0.5E-4 achieved in 9 iterations.
Solutions have converged according to CD criterion. # Convergence of real data

MiX99_SOLVE: End of Iteration Time: 13:11:02.9 18.11.2019

9 0.1635E-15 0.1646E-15 0.1680E-15 0.2608E-12 -0.8683E-13
9 0.1652E-13 0.1800E-13 0.1810E-13 0.6993E-12 -0.3253E-12
9 0.9189E-15 0.1077E-14 0.1097E-14 0.7176E-12 0.2352E-12
9 0.1516E-14 0.1914E-14 0.1454E-14 0.2583E-13 -0.1557E-13
9 0.9651E-15 0.8771E-15 0.9718E-15 0.5607E-13 -0.2165E-13

Convergences of five simulated data sets
REML ROUND 351 CONV Cd 0.1705E-07 (321+30/30 rounds)# REML convergence indicator

MiX99_SOLVE: End of MC EM REML iteration Time: 13:11:02.9 18.11.2019

REML convergence criterion (0.1E-8) was achieved in 321 rounds
and additional 30 rounds were performed to reduce variation in variance
component estimates.

First 10 MC EM REML estimates:

63

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

1 1 1 0.38841920
1 1 1 0.71836584E-01

.
.
.

64

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

10 Accounting for heterogeneous variance
The need to account for heterogeneous variances (HV) in several dairy cattle evaluations
led to the implementation of this possibility into MiX99. The applied method is based
on the multiplicative mixed model (MMM) approach given in Meuwissen et al. (1996).
The approach requires to solve simultaneously the model for breeding value estimation
(mean model) and a model for dispersion parameters (variance model). For our needs,
to accommodate multiple trait test-day models, we have modified the approach of
Meuwissen et al. (1996). The most important modifications are: scaling factors are
standardized to keep the across trait covariance structure unchanged; loss in degrees
of freedom due to the estimation of fixed effects in the mean model is accounted
(by an approximation) for the estimation of residual variances within strata; variance
components for the mean model are not re-estimated; and the solving algorithm was
modified to allow large test-day models. A description of the implemented method is
given in Lidauer et al. (2008).

The implementation was targeted towards test-day models for dairy cattle. This required
some restrictions on the variety of variance models that can be fitted. However, the
current implementation should allow accounting for heterogeneous variance in many
other models beside test-day models. However, non-linear models are not supported.

For future versions of MiX99 we target on a larger variety of variance models and
simplified implementation.

10.1 Computation environment
The current implementation works only for the parallel solver in MiX99. Therefore, a
MPI (message passing interface) environment is required on the computing platform.
The HV method was implemented having shared memory computer architecture in
mind. However, meanwhile we have implemented the HV method also on distributed
memory platforms. An example of the required scripts for setting up the HV method on
a distributed memory platform (Linux-cluster) may be requested from the authors.

10.2 Models for the heterogeneity of variances
In the multiplicative mixed model approach two models have to be solved simultaneously,
the mean model (the model with the breeding values) and the variance model (the model,
which describes the heterogeneity of variances). By definition of the multiplicative mixed
model approach, the mean model must be nested within the variance model. This is
because scaling of observations of a particular stratum will change the mean of these
observations, which requires that the mean model is able to account for this change.

10.2.1 Currently supported variance models by MiX99
For large models, like random regression test-day model, solving a multiplicative model
is a challenging task. Therefore, some restrictions were necessary on the type of
variance models that can be fitted. The possibility for a larger variety of variance models
would lower computation speed, and therefore, is not implemented yet. For an easier
understanding, a short explanation of the computations is given:

Considering a mean model of the form:

yiλi = Xib+Zia+ ei

65

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

where, yi contains all observations of stratum i, which are scaled with the same
adjustment factor λi; and a variance model of the form:

sik = β1ik + β2ik + ϵik

where β1ik is a fixed effect and β2ik may be a fixed or a random effect.

Solving of the MMM of those two models will follow the approach given in Meuwissen
et al. (1996) apart from a few modifications. The solving scheme starts with the
initialization (I step). In the following, step P, E, M, and A will be cycled until the
adjustment factors are sufficiently converged. Finally, step P will be performed until
solutions to the mean model are converged. The steps are:

I step: q = 0,λ[q] = 1,β[q] = 0, and σ
2[q]
eT = σ2

eTMM

P step: y
[q]
cTi

= yTi
λ
[q]
Ti

and iterate mean model

E step: ẑ
[q]
Ti

= 0.5
[
y
′[q]
cTi

(
y
[q]
cTi

− ŷ
[q]
cTi

)
σ
−2[q]
eT − nTi

]
[3]

ŵ
[q]
Ti

= 0.25σ
−2[q]
eT y

′[q]
cTi

ŷ
[q]
cTi

+ 0.5nTi
[4]

s
[q]
Ti

=
(
ẑ
[q]
Ti
/ŵ

[q]
Ti

)
+ β

[q]
1Ti

+ β
[q]
2i

− β
[q]
TBASE

[5]

M step: iterate
[
S′W [q]S +∆ν

]
β[q+1] = S′W [q]s[q] [6]

A step: λ
[q+1]
Ti

= exp
[
−0.5

(
β
[q+1]
1Ti

+ β
[q+1]
2i

− β
[q+1]
TBASE

)]
[7]

σ
2[q+1]
eT = σ

2[q]
eT exp

(
β
[q+1]
TBASE

)
[8]

where q is the adjustment cycle; σ2
eT

is the standardization variance for trait T ; σ2
eTMM

is
the residual variance for the trait T used in the mean model; ycTi

includes the adjusted
observations for trait T and stratum i; ẑTi

is an estimate of the heterogeneity of the
residual variance for trait T in stratum i, and ŵTi

is the variance of ẑTi
, where ŷcTi

is
the prediction of ycTi

, and nTi
is the number of observations for trait T in stratum i; sTi

resembles the observation for the variance model related to trait T in stratum i; βTBASE
is

the weighted mean of the β1Ti
estimates that built the base for trait T ; s contains all sTi

,
β contains all β estimates and S is the corresponding design matrix; W is diagonal with
all ŵTi

estimates at the diagonal, and if desired, ∆ν may present a variance structure
(i.e. autoregressive process) for random effect β2.

The current version has the following requirements for the definition of the variance
model:

1) The variance model must have the same number of traits as the mean model.
In case of a multiple trait model, because of computational reasons, traits are
analyzed simultaneously even the traits are uncorrelated.

2) If traits are grouped by trait groups, traits must be grouped in the same order in
both models.

3) Two effects must be specified for each trait.

66

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

⇒ Fixed across block strata: The first effect must be a fixed effect. Usually,
this effect will describe heterogeneity of variance between strata, which is
common across the whole data; for instance, strata like years, seasons,
parities, etc.

⇒ Fixed/random within block strata: The second effect may be a fixed or a
random effect. In case of a fixed effect, please see MODEL instructions,
about how to specify LS-models. In case that the second effect is random,
optionally, a first order autoregressive process for strata within same environ-
ments (blocks) is supported. For the latter, a program (mix99hv) is provided,
which sets up the autocorrelation structure.

The previous three requirements for the variance model should be easy to accommodate.
However, there is one more restriction on how the strata for the two effects in the
variance model must be defined. These restrictions are because of computational
constrains only. For an easier understanding of this restriction, it is worth to know that
mix99p performs all calculations of step E for one data block at the time. For the need
of fast computations all required information is stored in vectors, rather than in linked
lists. To avoid exhaustion of computer memory only the segment of the strata that
relates to one data block is made accessibly during processing of a particular data
block. This leads to the following two restrictions:

1) The second effect (β2) must include a block interaction regardless whether it is
defined as fixed or as random. The block structure must correspond with the block
structure of the mean model. Note: The blocking variable of the mean model
will be included as interaction in the second effect of the variance model in the
form block × within-block classes (see 10.3.1). Therefore, it is important that the
blocking variable in the mean model is the same for all observations with the same
production environment. For instance in dairy cattle, the blocking variable may
be herd of production, but it must not be herd of birth, if heterogeneous variance
due to different production environments should be adjusted. Calculations are
performed in block-wise manner, where a data block in the mean model has a
corresponding data block in the variance model. This requires, that each stratum
of the second effect can only be present in one block.

2) Strata of the first effect (β1) can be associated with data of different blocks.
However, because of computational restrictions, within each data block a strata of
the first effect (β1) can only be associated with one strata of the second effect (β2).
Thus, the levels of the first effects must be nested within the levels of the second
effect. (This is because within each block only one pointer to the second effect
strata is stored for each first effect strata. The restriction could be relaxed if a
pointer to the second effect strata would be stored for each observation. However,
this would be currently computationally too expensive). Different strata of the first
effect can be associated with the same stratum of the second effect. For instance,
if the first effect in the variance model is a region×year×season effect, then the
second effect may be a herd effect, a herd×year effect, or a herd×year×season
effect. However, if the first effect is a year effect only, then the second effect may
not be a herd×year×season effect.

67

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

10.3 Input data for the variance model
The program mix99hv sets up the required input data files for the variance model. In
order to get first heterogeneity observations, a few iterations have to be made on the
mean model prior to the mix99hv run.

10.3.1 Input data for mix99hv
Three integer columns of the input data file for the mean model are read by mix99hv
when setting up the data file for the variance model. These three columns are: the
column for the blocking variable, a column with the strata of the first effect of the variance
model, and a column with the within block strata for the second effect of the variance
model. The blocking variable must be consistent with the production environment in
which the observations were made. For instance, herd of production but not herd of
birth. This is important because mix99hv uses the blocking variable for coding the
second effect of the variance model. For the same reason, the third column must
contain a within-block stratification only (without block interaction).

Both columns, that one with the blocking variable and the other one with the within-block
stratification, are used to set up information for the first order autoregressive process
(Wade and Quaas, 1993) and to set up the strata for the second effect in the variance
model. To accommodate the autocorrelation structure, coding of the within-block
classes must be consistent with the distances between classes. When coding starts
from n and goes up to k, then k - n is equal to the largest possible distance between
classes of the block. Usually, classes are defined by the time when observations were
recorded, e.g., year, month, week. Class codes have to be defined that the distance
between consecutive classes is one, i.e., class_code n+1 - class_code n = 1. In case,
there is a missing class between consecutive classes, the distance must be 2. It is
advisable to number all possible classes consecutively from 1 to k and then give for
each class the corresponding code. This way, mix99hv will automatically calculate the
right distances between classes.

If the second effect in the variance model is considered as fixed effect or as a normal
random effect, coding of the within block strata can be relaxed. However, in order to
save memory, we recommend that within block coding should be consecutive and begin
from one. Remember, that the actual class code for the second effect will be formed by
the program mix99hv from the block sorting variable and the within block class code.

10.3.2 Instruction file for mix99hv
Execution of mix99hv requires an instruction file, which is read by standard input.
Editing rules for this file are the same as for the MiX99 instruction file. The file contains
several instruction lines, which have to be in the same order as given in the following.
The file can contain as many comment lines as wanted.

DATAFILE The name of the input data file for the mean model. If the data file is in a
different directory, the whole path must be specified.

VAR_I One line with one integer and one character. The integer is the number of
integer columns in the data file. The character is a code for the type of the
file.

f Formatted free format (columns are separated by at least one space).
u Unformatted format, i.e., a binary file.

68

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

TRGRP One integer value that indicates the integer column with the trait group
code in the data file. If trait groups are not needed the number must be
set to zero (0).

SORT_B One integer, which indicates the integer data column of the block sorting
variable in the input data file for the mean model. The variables in this
column will be used to set up the autocorrelation structure and to form the
class codes for the second effect in the variance model (see also 10.3.1).

MODVAR One line with two integers. The first integer indicates the integer data
column with the class variables of the first effect in the variance model
(fixed across block strata). The second integer indicates the integer data
column with the within-block class variables for the second effect in the
variance model (within block strata).

ARFILE A line with one character. This character defines, whether a file
(AR.pedi.reml) with information about the autocorrelation structure
is created. This file is only useful for the estimation of variance compo-
nents for the variance model, using our tailored software, which is not
included in MiX99.

n No. No file created.
y Yes. File created.

STAND A line with one character. This character defines, whether or not standard-
ization variances (provided in the file HVbase_ResVar, for the calculation
of the heterogeneity observations), should be scaled to result standard-
ized adjustment factors, which are on average 1.0 for observations of the
defined base strata. For more details, see Contents. The Standardization
process has to be done only once for a specific model. The obtained
scaled standardization variances can then be used as parameters for
future analyses.

y Yes. Standardization of multiplicative adjustment factors.
n No. No standardization processes.

BASEFILE If y is defined, an additional line with the name of the file, that
contains the class codes for the base classes must be given
(see Contents).

APPROX A line with one character for each trait. This character defines, whether or
not rank approximation, to account for loss in degrees of freedom due to
the estimation of fixed effects in the mean model, should be considered
for the estimation of within strata residual variances. This option was
included for the need to avoid an underestimation of within strata residual
variances when size of strata is small. This approximation can only be
used if within block fixed effect classes in the mean model match with the
strata of the second effect in the variance model. For instance, a fixed
herd×year effect in the mean model and herd×year strata for the second
effect of the variance model. Otherwise, the loss in degrees of freedom
will be underestimated.

69

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

y Yes. Consider rank approximation.
n No. Do not consider rank approximation.

SETLOSS One line with as many real values as there are traits in the
model. This line is only given if d is specified at the end of
the previous APPROX instruction line. Then, for each trait,
for which rank approximation is not applied, a preset loss
in degrees of freedom may be given. The value must be
between 0.0 and 1.0.

MERGE2 One line with as many integers as there are traits in the model. The
integers tell whether strata of the second effect in the variance model are
combined across traits. For the specification of the integers, the same
rules apply as for one column in the MERGE instruction for mix99i. The
specified integers must be consistent with the MERGE specification in the
variance model instruction file. If combining is not desired integers from 1
up to n are given, where n is equal to number of traits.

TMPHV The directory where the HV information files HV.data, HV.pedi,
Lambda.data(i), HV.info(i), and optional ARsiwi.data(i) will
be created. These files are rather large and will be created during the
execution of the script runMMM. If the HV information files should be in the
same directory where the script is executed, a dot (.) is given.

10.3.3 Output files from mix99hv
The program mix99hv creates a file named HV.data, which is the input data file
for the variance model; a file named HV.pedi, which contains information about the
autocorrelation structure; the files named AR.block, and Hetlog, which are read
by mix99i and mix99p; as well as the files HV.info(i), which are needed during
updating of the adjustment factors.

HV.data

The file HV.data is created by mix99hv and is the input data file for the variance
model. The file is in unformatted (binary) format and contains integer and real data
columns. First there are four integer data columns, followed by the real data columns,
where the number of real data columns depends on the specified model.

70

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

Integer data column Description
1 renumbered block sorting variable
2 renumbered class variables for the second effect
3 trait group code
4 renumbered class variables for the first effect

There are two groups of real data columns. The first group contains heterogeneity
observations and the second group the corresponding weights for the heterogeneity
observations. Each group has as many columns as there are number of traits in the
largest trait group. E.g., if the first trait group includes two traits and the second trait
group three traits, then there will be three columns for the heterogeneity observations
and three columns for the weights. The order of the heterogeneity observations and of
the weights follows the order of the traits within trait group. If there are fewer traits in a
trait group, remaining columns are set to missing. If an observation is missing or if a
column is not used for a certain trait group, a code for missing values will be given. This
code is set to -8192.0 and has to be given in the instruction file for the variance model.

HV.pedi

The file HV.pedi is created by mix99hv as well. The file is needed to provide the
blocking information for the variance model and to set up the autocorrelation structure
for second effect in the variance model, if latter is desired. For the variance model, the
HV.pedi file replaces the normal pedigree file. The file has four integer columns:

Integer column Description
1 renumbered class variables for the second effect
2 distance to the next classes
3 information about class position within block (1=first class in block;

2=class between; 0=last class in block; 3=first and last class in block)
4 renumbered block sorting variable

In case it is desired to define the second effect as a fixed effect (LS-models), information
on column 2 and 3 will be not used. If the second effect should be a normal random
effect, the autocorrelation parameters on the RHO instruction line should be set to zero
(0.0) in the instruction file for the variance model. This makes information on 2 and 3
redundant. Alternatively, it is possible to define instead of ar (autoregressive model)
am (animal model) in the instruction file for the random model and set the values in
column 2 and 3 to zero.

10.4 Instruction file for the variance model
Setting up the instruction file for the variance model follows the same rules as given for
the mean model. However, a large part of the instructions are already defined by the
general setup for the HV-adjustment. These pre-defined instructions are as following:

TITLE

INT-VAR Block BlockxCl Trg Fix

71

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

REAL-VAR Name of traits followed by weights for the traits. Names are in same order
as given in the mean model.

TRAITS Number of traits must be the same as in the mean model.

TRGRP Number of trait groups must be the same as in the mean model. Integer
input column for the trait group code is 3.

SORT_R 1 2
The value 1 for the integer column with block code, followed by the value 2
for the integer input column of the second effect in the variance model.

FIXRAN 1 1
Two integers with the value 1, for the number of fixed and random factors.

MODEL As many model lines as there are traits in the model. Ordering of the
traits within trait groups must be the same as in the mean model. For
the variance model, all observations are weighted (see Meuwissen et
al. (1996)). This requires defining of the real columns with the weights.
In HV.data, the real columns with the weights start after the columns
with the observations and have the same order as the columns for the
observations. Note, if trait groups are defined, for any trait group, the
column with the observations for the first trait within trait group is always
the first real column. For each trait, the corresponding column with the
weights is on position “size of largest trait group plus trait column”.

For the first effect in the variance model column 4 has to be defined, for
the second effect column 2 (see Example 10.9).

WITHINBLOCKORDER - 1
A dash (-) is given followed by the integer value 1.

RANDOM The second effect in the model has to be defined always as random (also
for a LS-model; see defining of LS-models).

RELATIONSHIPS 1 1
Two integers with the value of 1.

REGRESS Only class variables (cl) are allowed.

COMBINE (n/y). In case y is given, then last column of the MERGE instruction
lines must be consistent with the MERGE2 line in the instruction file for
mix99hv.

PEDIGREE ar for autoregressive model, am for random effect, ls for LS-model.

RHO In case ar is defined in PEDIGREE , one line with as many
autocorrelation values as there are traits in the model must
be given. Order of the values must be the same as the order
of traits. In case some traits are combined, the order of the
autocorrelations must follow the order of the corresponding
variances that are applied for the last random effect.

DATAFILE The HV.data file is placed in the same directory as was defined for the
work files in the instruction file for mix99hv: /path for the work

72

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

files/HV.data.

VAR An integer value of 4 for the number of integer columns in HV.data
followed by the number of real columns in HV.data and the character u
for unformatted file. The number of real columns is two times the size of
the largest trait group.

MISSVA -8192.0
The code for missing heterogeneity observations is -8192.0.

SCALE n
A n for no scaling.

PEDFILE The HV.pedi file is placed in the same directory as was defined for the
work files in the instruction file for mix99hv: /path for the work
files/HV.pedi.

PARFILE The name of the file with the variance components for the variance model.

TMPDIR The directory where the temporary files for the variance model are placed.
The directory must be a sub-directory of the directory with the temporary
files for the mean model and must be named B1: /path for the mean
model temporary files/B1.

RANSOLFILE y
A y for the second effect in the model. In case of a LS-model a y must be
given.

SOLUNF n
A n for no unformatted solution files.

PRECON d d
A d for the WpW and d for the XpX part, since all traits are uncorrelated.

PARALLEL Same number of processes as for the mean model.

COMMONBLOCKS 0
An integer value of 0, because there is no common pedigree block in the
model.

From release XII/2014 onwards the variance model can be given also with CLIM syntax.
The following illustrates CLIM syntax needed to build variance model.

Variance model CLIM:
TITLE Variance Model

DATAFILE BINARY path/to/HV.data
INTEGER BLCK HERDxYR TRGRP MONTH
REAL HET_OBS WGHT

MISSING -8192.0
TRAITGROUP TRGRP

DATASORT BLOCK=BLCK PEDIGREECODE=HERDxYR

PEDFILE path/to/HV.pedi
PEDIGREE HERDxYR ar

73

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

PARFILE variance_model.var
AR 0.7 # If pedigree type is ar then autocorrelation values

for each trait must be given in AR statement

MODEL # As many model lines as there are traits in the model
Ordering of traits must follow mean model!

HET_OBS(1) = MONTH HERDxYR ! WEIGHT=WGHT
The first effect of the model is fourth integer column
and the second effect is second integer column

PRECON d d
PARALLEL 2 0
WITHINBLOCKORDER HERDxYR

10.5 Variance components for the variance model
In case the second effect of the variance model is defined as a random effect, variance
components are required. Because variance components depend on the specified
model, only a brief explanation about how the variance components for the variance
model are estimated is provided. Generally, the estimation procedure requires first solv-
ing the multiplicative mixed model followed by estimation of the variance components
for the variance model. The new variance components are updated in the multiplicative
mixed model and the whole process is repeated until variance components no longer
change. MiX99 authors will provide support for estimating VC for multiplicative mixed
models.

At the moment the MiX99 variance component estimation module does not support
models with an auto-regressive correlation structure.

10.5.1 Files with information for the variance component estimation
For the estimation of the variance components, a file with the heterogeneity observations
for the variance model is needed. MiX99 provides the files named ARsiwi.data(i),
which contain the most recent heterogeneity observations plus the corresponding
weights. The file is an unformatted file with real columns only. The order of the columns
is the same as the order of the real columns in the HV.data file. The integer columns of
the HV.data file and the real columns of the ARsiwi.data(i) files may be merged
to create an input data file for the variance component estimation. In order to obtain the
ARsiwi.data(i) files, an h must be specified in the RESID option line of the MiX99
solver option file for the mean model (Mean_model.slvM in the HV directory).

In case, an autocorrelation structure is applied for the second effect in the variance
model, MiX99 may provide two different files with the required information to set
up the autocorrelation structure. The first is named HV.pedi, which contains the
required information as needed for MiX99. The second is named AR.pedi.reml,
and is created if a y is specified in the ARFILE instruction line of the instruction file
for mix99hv (see 10.3.2). The AR.pedi.reml file contains the following five integer
columns:

Integer column Description
1 renumbered class variables for the random effect (within block strata)
2 renumbered class variable for the next class of the random effect;

this variable is zero (0) in case the class in the first column is the first
or the last class of a block.

74

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

3 renumbered class variable for the next class of the random effect, in
case the class in the first column is the first class of a block; and
otherwise zero (0).

4 a column with zeros
5 a column with zeros

10.6 Standardization of the multiplicative adjustment factors
In the method presented by Meuwissen et al. (1996), variance components for the
mean model are re-estimated, because accounting for HV has some effect on the
heritability. However, re-estimation of variance components is hardly feasible for large
models. Further, even it would be possible to extend the approach of Meuwissen et al.
(1996) to multiple trait models, it would be computationally demanding. Therefore, in
the current implementation, heterogeneity observations of different traits are considered
to be uncorrelated in the variance model. For all these reasons, a standardization
procedure was implemented, which should assure that the covariance structure across
traits remains unchanged.

The idea of the standardization procedure is to find for each trait a standardization
variance var(s), for which the quantity “ [(y′

ieiλ
2
i)/var(s)]− ni“ becomes zero and the

adjustment factors for observations in the base classes are on average 1.0; yi and ei

are of size ni and contain observations and residuals of stratum i, respectively; λi is
the adjustment factor for stratum i. In a perfect world, the standardization variance
var(s) would become same as the residual variance of the mean model. The standard-
ization variances have to be provided in a file named HVbase_ResVar. The file with
converged standardization variances must be provided for any future (routine) runs.

10.6.1 Files for the standardization procedure
File with class codes of the base

The standardization base should include a part of the data for which it is reasonable
to assume that standardization factors should be on average 1.0 for all traits. This
part of the data must include observation from all traits (if this is not possible see
Contents). Corresponding strata of the first fixed effect in the variance model need
to be provided in the base class file. The file will be renumbered by mix99hv and
original and renumbered class codes are written to ID.Base. The provided file may
contain additional columns. The file ID.Base is repeatedly read by mix99p during the
standardization process.

File with the residual variances

A file named HVbase_ResVar with as many rows as there are traits in the model. Each
row corresponds to the trait in the model and contains the standardization variance.
During the standardization process, the file will be updated after each adjustment cycle.
The residual variances of the mean model can be given as starting values for the
standardization process. The HVbase_ResVar file must be provided in the directory
where mix99p is executed any time when adjustment for HV is considered.

10.6.2 Standardization process
The standardization process is specified in the instruction file for mix99hv. A y must be
specified in the STAND instruction line, and on the BASEFILE line the filename of the

75

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

file with the base class codes must be provided. To ensure converged standardization
variances, we recommended a minimum of 150 adjustment cycles. Cycle to cycle
changes in the standardization variances can be checked from the standard output file.
The line marked with “Re:” contains the currently used standardization variances.

The provided standardization method might not work for very complicated models. For
instance, if not all traits have observations in the same time period or in some cases
where genetic effects are combined over traits. For such situations it is possible to keep
the variance ratios between standardization variances of different traits unchanged.
Providing the file HVbase_ResVarLEVEL will allow this task. The file has the same
form as HVbase_ResVar but additionally a second column with integer values is
included. The first column contains standardization variances and the integers in the
second column specify which standardization variances should be changed and which
should have a fixed ratio to another standardization variance. If the standardization
variance is allowed to change, a trait specific number is given. If the standardization
variance should have a fixed ratio with the standardization variance of another trait,
then trait number of the other trait is given. For instance, if the standardization variance
for trait two should change and the ratio between standardization variance for trait four
and trait two should be fixed, then a 2 is specified for trait two and also for trait four.

10.6.3 Multiple residual variance-covariance matrices
Multiple residual variance-covariance matrices (see Multiple residual (co)variances
(RESFILE) in Technical reference guide for MiX99 pre-processor) for the mean model
are automatically considered for the calculation of observations for the variance model.
However, for the standardization process one needs to be aware that provided stan-
dardization variances in the HVbase_ResVar file correspond to the residual variance-
covariance matrix of the first residual variance class in the mean model. The base
classes need to contain observations that go into the first residual variance class.
During the standardization process, standardization variances for all other residual
variance classes are automatically changed if the standardization variances for the first
residual variance class are changed. The ratios between standardization variances of
different residual variance classes are kept constant.

If it is desired that ratios between standardization variances of different residual vari-
ances classes are different from those between residual variances of different residual
variance classes in the mean model, a file named HVbase_ResVarCLASS can be
provided. The file has as many rows as there are multiple residual variance classes
and as many columns as there are traits in the model. Each row should contain the
corresponding residual variances. For classes where higher or lower standardization
variances are desired, the variances should be changed accordingly.

10.7 Running a model with heterogeneous variance
The applied multiplicative mixed model approach, to account for heterogeneous vari-
ance, requires a simultaneous solving of two linear models, namely the mean model
and the variance model. Both models are solved by two different MiX99 runs, which
interact with each other. To facilitate these interactions between the models a certain
directory structure is required when setting up the models.

The heterogeneous_variance directory of the MiX99 package includes all re-
quired to set up to run a model with heterogeneous variances. For distributed memory

76

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

platforms, implementations are more complicated, and we recommend a good under-
standing of the implementation for shared memory platforms before an implementation
is done for a distributed memory platform.

10.7.1 Implementation on shared memory platforms
The mean model must be set up in an own directory. The variance model must be set
up in a sub-directory of the mean model directory and must be named B1. The directory
with the temporary files for the mean model must be specified in the instruction file for
the mean model. The temporary files for the variance model must be in a sub-directory
of the mean model temporary file directory and it must be named B1. Additionally a third
directory with heterogeneous variance information must be specified in the instruction
file for mix99hv. The input data files for the variance model will be placed into this
directory. For large model, these three directories may require considerable amount of
disk space.

The whole solving process is controlled by the script runMMM provided with MiX99
package. The script controls all required MiX99 runs for solving the multiplicative mixed
model. The only required modifications in the script are to set the parameter for the
number of processes (PARALLEL) and the calls to mpirun. The program mix99p calls
the script solve_HVmodel during iteration process to start solving of the variance
model. Output from this script is written to CYC.log

Three different solver option files are needed for multiplicative mixed model. The
files in example provided are named as Mean_model_init.slvI, which is used
to initialize mean model, solver option file Variance_model.slvV (in directory B1)
for the variance model, and Mean_model.slvM for running the mean model. The
convergence criterion for the adjustment procedure is given in the STOPC instruction
line of the stopping criterion file Mean_model.slvM. From our experiences, a stopping
criterion of 1.0e-7 for the relative change between adjustment factors of consecutive
cycles or at least 80 adjustment cycles was found useful. However, a less conservative
criterion may yield already sufficiently converged adjustment factors.

10.8 Workflow and needed files for running multiplicative mixed
model

The following table shows all necessary files and directories needed to set up and
run multiplicative mixed effects model. The filenames are the same as in HV example
shipped with MiX99. Files that have to be named with a certain name are marked with
a star (*).

Directory and file setup for multiplicative mixed model

Directories within mean model directory
*B1 Directory for variance model
tmpMiX Directory for temporary files (Mean model)

*tmpMiX/B1 Directory for temporary files (Variance model).
Should be a subfolder of mean model temporary files

tmpHV Directory for HV information files (see TMPHV)

Files

77

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

runMMM Script that does all steps
*B1/solve_variance_model Script that runs variance model. Created by runMMM

script.
*solve_HVmodel Script called from mix99p to run variance model. An

example script is shipped with MiX99. Script runs
B1/solve_variance_model

Files for Mean model
mean_model.[clm|mix] Definition for the mean model
mean_model.dat Data
mean_model.ped Pedigree
mean_model.var Variance components for mean model
mean_model.resvar Optional: Variance components for residuals if more

than one residual class
mean_model_init.slvI Solver option file to initialize the mean model
mean_model.slvM Solver option file for the mean model

Files for variance model
hvdata.dir Instruction file for mix99hv (see section 10.3.2)
B1/variance_model.[clm|mix] Model definition for the variance model (see section

10.4)
B1/variance_model.slvV Solver option file to variance model
B1/variance_model.var Variance components for the variance model

*B1/HVbase_ResVar Standardization variances for traits
*B1/HVbase_ResVarCLASS Optional: Ratios of standardization variances

between different residual classes

Additional files for standardization of adjustment factors
HVbaseclasses Standardization base (see section 10.6.1)

*HVbase_ResVarLEVEL Optional: Control standardization variance estimation
for traits

*Name can not be changed

Solving multiplicative mixed effect model requires several steps. To help users we pro-
vide an example script runMMM located in examples/heterogeneous_variance directory
that can be used as a starting point when solving larger models with HV correction.
Workflow of running MMM is presented in the following table. Input files are the same
as in previous table.

Workflow for running MMM

In mean model directory
1 mix99i mean_model.clim Initialize mean model
2 imake99 Additional pre-processing program mean model

78

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

3 mix99p < mean_model_init.slvI Run couple of iterations of mean model to get
initial values for variance model

4 mix99hv < hvdata.dir Create data for variance model

In B1 directory
5 mix99i variance_model.clim Initialize variance model
6 imake99 Additional pre-processing program for variance

model
7 mix99p < variance_model.slvV Solve variance model

In mean model directory
8 mix99p < mean_model.slvV Solve MMM. Mean model solver calls script

solve_HVmodel. That runs step 7 in each
cycle and updates lambda values.

In addition to files created by standard MiX99 solver the HV solving process creates files
to exchange information between mean and variance model and provide information to
user. The following table lists the most important files. Filenames containing standard
output from MiX99 software follows the script runMMM shipped with MiX99 package.

Files created by MiX99hv
tmpHV/HV.data Data for variance model
tmpHV/HV.pedi Pedigree file for variance model

Optional files created by mean model solver
ARsiwi.data(i) Heterogeneity observations and weights for variance model.

Used when estimating VC for variance model. See section
(10.5.1)

AR.pedi.reml Information about AR correlation structure

Log files created by runMMM
Mi.log Mean model initialization (mix99i)
imake99.log Mean model imake99
Ma.log Log for first iterations on mean model (mix99p)
HVd.log Log from variance model data creation (mix99hv)
B1/Vi.log Variance model initialization (mix99i)
B1/imake99.log Variance model imake99
B1/Vs.log Variance model solving. All cycles. (mix99p)
Ms.log Log for solving multiple mixed model

Log files created by MiX99
CYC.log Output from solve_HVmodel. (see section 10.10.3)
Lambda.log Lambda values. (see section 10.10.4

79

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

10.9 Example
Accounting for heterogeneous variance in a small test-day model. This example is also
shipped with MiX99 package and can be run with script runMMM. The script carefully
verifies that all the steps are performed without errors.

Mean model is a random regression model. Variance model includes fixed month strata
and autocorrelation structure is applied between consecutive years within herd.

Instruction file for mean model (mean_model.clm):
TITLE Heterogeneous variance adjustment by Meuwissen approach: a demonstration

DATAFILE mean_model.dat
INTEGER Month Animal Herd HerdYear Year
REAL Covar_1 Covar_2 Milk
DATASORT BLOCK=Herd PEDIGREECODE=Animal

PEDFILE mean_model.ped
PEDIGREE G am

PARFILE mean_model.var

TMPDIR tmpMiX
MISSING 0.0

MODEL
Milk = Covar_1 Covar_2 Month HerdYear G(1 Covar_1 Covar_2 | Animal)

WITHINBLOCKORDER G HerdYear

PRECON d d b
PARALLEL 2 1

Instruction file for mix99hv hvdata.dir :
Instruction file for mix99hv
This is needed to allow mix99hv to create a data and pedigree file
for the variance model
#--
#
Name of the data file

mean_model.dat
Number of integer columns; type of file (f/u)

5 f
Column with the trait group code

0
Column with the block variable for the auto regress. proc.
(HERD)

3
Heterogeneity Model:
Fixed across block strata; random within block strata
(Month) (Year within Herd)

1 5
Create pedigree file for REML-analysis? (y/n)

n
Standardisation of multiplicative adjustment factors? (y/n)

n
Name of file with the class codes of the base
ID.Base.Classes

Approximation of rank across traits (y/n)
y

Random HY effect: Combining of second and third lactation in the variance model
1

Directory for the temporary files
./tmpHV

80

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

Instruction file for the variance model (variance_model.clm):
TITLE Variance Model

DATAFILE BINARY ../tmpHV/HV.data
INTEGER BLCK HERDxYR TRGRP MONTH
REAL HET_OBS WGHT
MISSING -8192.0
TRAITGROUP TRGRP

DATASORT BLOCK=BLCK PEDIGREECODE=HERDxYR

PEDFILE ../tmpHV/HV.pedi
PEDIGREE HERDxYR ar

PARFILE variance_model.var
AR 0.7

MODEL
HET_OBS(1) = MONTH HERDxYR ! WEIGHT=WGHT

PRECON d d
PARALLEL 2 0
WITHINBLOCKORDER HERDxYR
TMPDIR ../tmpMiX/B1

File with standardization variances HVbase_ResVar:
1.089320

MiX99 solver option file mean_model_init.slvI:
RAM RAM demand: H=high

H
STOP Max.iter, Tolerance (CR), Convergence criterion, Force

20 1.0e-7 R F
RESID Residuals calculation

N
VALID Model validation

N
VAROPT Variance options: HV (Start)

S
SOLTYP Solution file options: No solution files

N

MiX99 solver option file variance_model.slvV:
RAM RAM demand: H=high

H
STOP Max.iter, Tolerance (CR), Convergence criterion, Force

25 1.0e-7 R F
RESID Residuals calculation

N
VALID Model validation

N
VAROPT Variance options

N
SOLTYP Solution file options: Half-Chebychev-accelerated solutions

H

MiX99 solver option file mean_model.slvM:
RAM RAM demand: H=high

H
STOP Max.iter, Tolerance (CR), Convergence criterion, Force

25 1.0e-7 R F

81

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

RESID Residuals calculation
N

VALID Model validation
N

VAROPT Variance options: HV (Continue)
C
STOPC Max.HVcycles, Conv.value for lambda effects (Cd^2)

80 1.0e-7
SOLTYP Solution file options

Y

File with variance components for the variance model variance_model.var:
1 1 1 0.078485
2 1 1 0.590860

10.10 Output files
There are several sources to follow the progress of the heterogeneous variance ad-
justment process: information written to standard output, HVd.log, CYC.log and
Lambda.log.

10.10.1 Mi.log and Ms.log
Standard output from mix99i and mix99p are written to the files I.log and S.log
for the mean model, respectively, and for the variance model it is written to Vi.log,
Vs.log, respectively. Each cycle, mix99p output from the variance model will be
appended to Vs.log.

Standard output from the main script runMMM contains general information about the
progress of the HV adjustment and is explained in more detail. The output informs about
the current stage of calculation: INITIALIZATION, START ADJUSTMENT CYCLES,
CYCLE END, FINAL ITERATION ON MEAN MODEL.

During each cycle the following information is provided (for a simple single trait model):

.
Solve Variance-Model

Last HV cycle: 2
Lambda criterion CD = 4.59369973910834D-006

8.85770073643941D-004
convergence of the adjustment factors

for lambda values of first and second

effect in the variance model

rhs’ M^-1 * rhs = 318.854161366479
--

8 0.6804E-02 0.000 0.000 0.000
9 0.3163E-02 0.000 0.000 0.000
10 0.3698E-02 0.000 0.000 0.000
11 0.3698E-02 0.000 0.000 0.000

iteration on mean model

Re: 56.1916 # Standardization variance

Residual class: 1
NStrata 22.0000 # number of strata for each trait

zHatMean 0.3248 # average absolute value of z(z is minimized)

wHatMean 2.4492 # average weight associate with z’s

.

82

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

10.10.2 HVd.log
This output provides information about the data and model structure for the variance
model.

For instance:

Number of Blocks in the Data: 57949
Largest Class in Blocks found: 21
Largest Class in Fixed Strata: 675
Shift variable: 100
Largest Random Stratum Code: 5794921

For routine evaluations it might give a large amount of warnings of the following form:

Block without si and wi values: renum.block code= 3771
Current number of blocks: 3713

This means that the block (herd) has not enough information to calculate residual
variances for the strata in the block. For instance if the strata are herd test-days and
there is only one cow in a herd.

For such a block a second warning will be written:

Warning!!! Block without HV-obs. in AR classes.
Block= 3713 ignored.

For such a case the adjustment factors will be set to 1.0. If the number of such block is
rather large one might consider a different variance model.

10.10.3 CYC.log
Every cycle mix99p calls the script solve_HVmodel. Output form this script as well
as a sample of adjustment factors it written to CYC.log.

During each cycle the following information is provided (for a simple single trait model):

.
Tue Apr 20 11:11:23 EEST 2004
Variance_model-iterations: 12 Convergence crit (Cr): 0.3716E-07
Lambda convergence (Cd):5.25599751543677D-006 0.00000000000000D+000
Beta convergence (Cr): 2.21850223850421D-002
Acceleration = 16.0800328372335 2 Used = 1.25000000000000
Lambda values for first 30 fixed strata:
--
Code, Trait 1, 2, 3, ...

1 0.9130
2 0.9416
3 0.9674
4 1.0524
5 1.1232

Lambda values for random strata:

Block, AR_class, Traits: 1, 2, 3, ...

1 1 1.0152
1 2 1.0140
2 1 1.0173
2 2 1.0142

83

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

3 1 0.9769
3 2 0.9849
4 1 0.9911
4 2 0.9874

.

The sample of adjustment factors allows visual inspection (by plotting the adjustment
factor of one class) of convergence.

10.10.4 Lambda.log
This file is created every cycle by the master process of mix99p. On distributed memory
platforms the file will be written to the directory of the master node. Lambda.log
contains the lambda values of all strata of the first effect and a sample of lambda values
of strata of the second effect in the variance model. It also provides information about
the standardization of variances. From the Lambda.log file one can check whether
the lambda values are within a reasonable range. Normally between 0.6 and 1.9. Some
values might be smaller or larger. In case a large amount of values is 0.37 (exp(-1)) or
2.72 (exp(1)) something might go wrong. The latter values are the maximum allowed
deviations of adjustment factors from 1.0.

84

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

11 Acknowledgement
The Genomics and Breeding Group at Natural Resources Institute Finland is kindly
acknowledged for the valuable suggestions, comments and for being the beta tester of
new MiX99 versions.

12 References
Gilmour, A. R. and Thompson, Robin (1998). ”Reformulated generalised linear (mixed)

model aids multiple trait genetic evaluation with polychotomous calving ease”. In:
Proc. 6th World Congr. Genet. Appl. Livest. Prod. Vol. 20, pp. 613–616 (cit. on p. 51).

Harris, B. and Johnson, D. (1998). ”Approximate Reliability of Genetic Evaluations Under
an Animal Model”. In: J. Dairy Sci. 81.10, pp. 2723–2728. DOI: 10.3168/jds.S0022-
0302(98)75829-1 (cit. on p. 43).

Hesterberg, T. (2005). ”Staggered Aitken Acceleraton for EM”. In: Proc. of the Amer-
ican Stat. Assoc. Minneapolis, Minnesota, USA, 2101––2110. URL: http://home.
comcast.net/~timhesterberg/articles/JSM05-accelerateEM.pdf (cit. on p. 16).

Hoeschele, I., Tier, B., and Graser, H. U. (1995). ”Multiple-trait genetic evaluation
for one polychotomous trait and several continuous traits with missing data and
unequal models”. In: J. Anim. Sci. 73.6, pp. 1609–1627. URL: http : / / www .

journalofanimalscience.org/content/73/6/1609 (cit. on p. 51).
Jamrozik, J., Schaeffer, L. R., and Jansen, G. B. (2000). ”Approximate accuracies of

prediction from random regression models”. In: Livest. Prod. Sci. 66.1, pp. 85–92.
DOI: 10.1016/S0301-6226(00)00158-5 (cit. on p. 30).

Janss, L. L. G. and Foulley, J. L. (1993). ”Bivariate analysis for one continuous and
one threshold dichotomous trait with unequal design matrices and an application to
birth weight and calving difficulty”. In: Livest. Prod. Sci. 33.3–4, pp. 183–198. DOI:
10.1016/0301-6226(93)90001-X (cit. on p. 51).

Lidauer, M., Emmerling, R., and Mäntysaari, E. A. (2008). ”Multiplicative random regres-
sion model for heterogeneou variance adjustment in genetic evaluation for milk yield
in Simmental”. In: J. Anim. Breed. Genet. 125.3, pp. 147–159. DOI: 10.1111/j.1439-
0388.2008.00728.x (cit. on p. 65).

Lidauer, M., Matilainen, K., Mäntysaari, E. A., Pitkänen, T. J., Taskinen, M., and
Strandén, I. (2023). Technical reference guide for MiX99 pre-processor. Release
X/2023. Natural Resources Institute Finland (Luke) (cit. on pp. 1, 3–5, 12, 15, 21,
28, 29, 32, 48, 52, 53, 55, 57, 76).

Lidauer, M. and Strandén, I. (1998). ”Experience on using parallel computing to solve
large test-day models”. In: Proc. 49th Ann. Meeting EAAP. 4. Warsaw, Poland, p. 46
(cit. on p. 1).

Lidauer, M. and Strandén, I. (1999). ”Fast and flexible program for genetic evaluation
in dairy cattle”. In: INTERBULL Bulletin. 20. Tuusula, Finland, pp. 20–25. URL:
https://journal.interbull.org/index.php/ib/article/view/468/466 (cit. on
pp. 1, 21).

Lidauer, M., Strandén, I., Mäntysaari, E. A., Pösö, J., and Kettunen, A. (1999). ”Solving
large test-day models by iteration on data and preconditioned conjugate gradient”.
In: J. Dairy Sci. 82.12, pp. 2788–2796. DOI: 10.3168/jds.S0022-0302(99)75536-0
(cit. on pp. 1, 2).

Matilainen, K., Mäntysaari, E. A., Lidauer, M., Strandén, I., and Thompson, R (2012).
”Employing a Monte Carlo algorithm in expectation maximization restricted maximum

85

https://doi.org/10.3168/jds.S0022-0302(98)75829-1
https://doi.org/10.3168/jds.S0022-0302(98)75829-1
http://home.comcast.net/~timhesterberg/articles/JSM05-accelerateEM.pdf
http://home.comcast.net/~timhesterberg/articles/JSM05-accelerateEM.pdf
http://www.journalofanimalscience.org/content/73/6/1609
http://www.journalofanimalscience.org/content/73/6/1609
https://doi.org/10.1016/S0301-6226(00)00158-5
https://doi.org/10.1016/0301-6226(93)90001-X
https://doi.org/10.1111/j.1439-0388.2008.00728.x
https://doi.org/10.1111/j.1439-0388.2008.00728.x
https://journal.interbull.org/index.php/ib/article/view/468/466
https://doi.org/10.3168/jds.S0022-0302(99)75536-0

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

likelihood estimation of the linear mixed model”. In: J. Anim. Breed. Genet. 129.6,
pp. 457–468. DOI: 10.1111/j.1439-0388.2012.01000.x (cit. on p. 54).

Matilainen, K., Mäntysaari, E. A., Lidauer, M., Strandén, I., and Thompson, R. (2013).
”Employing a Monte Carlo algorithm in Newton-type methods for restricted maximum
likelihood estimation of genetic parameters”. In: PLoS ONE 8.12. e80821. DOI:
10.1371/journal.pone.0080821 (cit. on p. 57).

Meuwissen, T. H. E., De Jong, G., and Engel, B. (1996). ”Joint estimation of breeding
values and heterogeneous variances of large data files”. In: J. Dairy Sci. 79.2,
pp. 310–316. DOI: 10.3168/jds.S0022-0302(96)76365-8 (cit. on pp. 15, 65, 66, 72,
75).

MiX99 Development Team (2025). MiX99: A software package for solving large mixed
model equations. Release IX/2025. Natural Resources Institute Finland (Luke).
Jokioinen, Finland. URL: http://www.luke.fi/mix99 (cit. on p. ii).

Misztal, I., Tsuruta, S., Aguilar, I., Legarra, A., VanRaden, P. M., and Lawlor, T. J. (2013).
”Methods to approximate reliabilities in single-step genomic evaluation”. In: J. Dairy
Sci. 96.0, pp. 647–654. DOI: 10.3168/jds.2012-5656 (cit. on p. 31).

Misztal, I. and Wiggans, G. R. (1988). ”Approximation of prediction error variance in
large-scale animal models”. In: J. Dairy Sci. 71, Supplement 2.0, pp. 27–32. DOI:
10.1016/S0022-0302(88)79976-2 (cit. on p. 30).

Mrode, R. A. and Swanson, G. J. T. (2004). ”Calculating cow and daughter yield
deviations and partitioning of genetic evaluations under a random regression model”.
In: Livest. Prod. Sci. 86.1–3, pp. 253–260. DOI: 10.1016/j.livprodsci.2003.09.
001 (cit. on pp. 12, 47).

Pitkänen, T. J. et al. (2022). ”From data to genomic breeding values with the MiX99
software suite”. In: Proc. 12th World Congr. Genet. Appl. Livest. Prod. Wageningen
Academic Publishers. Rotterdam, The Netherlands, pp. 1534–1537 (cit. on p. ii).

Shewchuk, J. R. (1994). An introduction to the conjugate gradient method without the
agonizing pain. URL: http://www.eletrica.ufpr.br/artuzi/te804/arquivos/cg.
pdf (cit. on p. 2).

Strandén, I. (1999). ”Parallel benefits in test-day evaluations”. In: INTERBULL Bulletin.
20. Tuusula, Finland, pp. 26–32. URL: https://journal.interbull.org/index.
php/ib/article/view/469/467 (cit. on p. 1).

Strandén, I. (2023). Command Language Interface for MiX99. Release X/2023. Natural
Resources Institute Finland (Luke) (cit. on pp. 1, 5, 12).

Strandén, I. and Lidauer, M. (1999). ”Solving large mixed linear models using precon-
ditioned conjugate gradient iteration”. In: J. Dairy Sci. 82.12, pp. 2779–2787. DOI:
10.3168/jds.S0022-0302(99)75535-9 (cit. on pp. 1, 3).

Strandén, I., Lidauer, M., Mäntysaari, E. A., and Pösö, J. (2000). ”Calculation of Interbull
weighting factors for the Finnish test day model”. In: INTERBULL Bulletin. 26.
Verden, Germany, pp. 78–79. URL: https://journal.interbull.org/index.php/
ib/article/view/366/366 (cit. on p. 30).

Tier, B. and Meyer, K. (2004). ”Approximating prediction error covariances among addi-
tive genetic effects within animals in multiple-trait and random regression models”. In:
J. Anim. Breed. Genet. 121.2, pp. 77–89. DOI: 10.1111/j.1439-0388.2003.00444.x
(cit. on pp. 30, 43).

Tyrisevä, A.-M. et al. (2011). ”Principal component approach in variance component
estimation for international sire evaluation”. In: Genet. Sel. Evol. 43.21. DOI: 10.
1186/1297-9686-43-21 (cit. on p. 57).

86

https://doi.org/10.1111/j.1439-0388.2012.01000.x
https://doi.org/10.1371/journal.pone.0080821
https://doi.org/10.3168/jds.S0022-0302(96)76365-8
http://www.luke.fi/mix99
https://doi.org/10.3168/jds.2012-5656
https://doi.org/10.1016/S0022-0302(88)79976-2
https://doi.org/10.1016/j.livprodsci.2003.09.001
https://doi.org/10.1016/j.livprodsci.2003.09.001
http://www.eletrica.ufpr.br/artuzi/te804/arquivos/cg.pdf
http://www.eletrica.ufpr.br/artuzi/te804/arquivos/cg.pdf
https://journal.interbull.org/index.php/ib/article/view/469/467
https://journal.interbull.org/index.php/ib/article/view/469/467
https://doi.org/10.3168/jds.S0022-0302(99)75535-9
https://journal.interbull.org/index.php/ib/article/view/366/366
https://journal.interbull.org/index.php/ib/article/view/366/366
https://doi.org/10.1111/j.1439-0388.2003.00444.x
https://doi.org/10.1186/1297-9686-43-21
https://doi.org/10.1186/1297-9686-43-21

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

VanRaden, P.M. and Wiggans, G.R. (1991). ”Derivation, Calculation, and Use of National
Animal Model Information”. In: J. Dairy Sci. 74.8, pp. 2737–2746. DOI: 10.3168/jds.
S0022-0302(91)78453-1 (cit. on p. 47).

Wade, K. M. and Quaas, R. L. (1993). ”Solutions to a system of equations involving
a first-order autoregressive process”. In: J. Dairy Sci. 76.10, pp. 3026–3032. DOI:
10.3168/jds.S0022-0302(93)77642-0 (cit. on p. 68).

Vuori, K., Strandén, I., Lidauer, M., and Mäntysaari, E. A. (Aug. 2006a). ”MiX99 –
Effective solver for large and complex linear mixed models”. In: Proc. 8th World
Congr. Genet. Appl. Livest. Prod. Belo Horizonte, MiG, Brazil, pp. 27–33 (cit. on
p. 52).

Vuori, K., Strandén, I., Sevón-Aimonen, M.-L., and Mäntysaari, E. A. (June 2006b).
”Estimation of non-linear growth models by linearization: a simulation study using
a Gompertz function”. In: Genet. Sel. Evol. 38, pp. 343–358. DOI: 10.1186/1297-
9686-38-4-343 (cit. on p. 52).

87

https://doi.org/10.3168/jds.S0022-0302(91)78453-1
https://doi.org/10.3168/jds.S0022-0302(91)78453-1
https://doi.org/10.3168/jds.S0022-0302(93)77642-0
https://doi.org/10.1186/1297-9686-38-4-343
https://doi.org/10.1186/1297-9686-38-4-343

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

Index
Index entry styles: Page numbers:
• normal index entry • primary definition: 88
• CLIM input commands • also referred: 88
• file names • Z see example on page
• MiX99 input commands
• shell commands

-99999, 53
-8192.0, 11, 11, 29, 71, 73

ACCani, 42
AccurType (ApaX), 33, 43–45
across block strata, 67, 69
ADJUST, 15, 15
Aitken acceleration, 16
am

Z 48, 80
am, 71, 72

Z 39, 49
apax99, 1, 30, 30, 31, 33, 34, 37, 40,

43
apax99p, 1, 30, 30–33, 37, 43
APAX_VAR_COMP.TXT, 34
APPROX (mix99hv), 69, 70
AR

Z 74, 81
ar

Z 73, 81
ar, 71, 72, 72
AR.block, 70
AR.pedi.reml, 69, 74, 79
ARFILE (mix99hv), 69, 74
ARsiwi.data(i), 11, 70, 74, 79
autoregressive model, 71, 72

B1, 77, 77
for temporary files, 73, 77

BASEFILE (mix99hv), 69, 75
BINARY

Z 73, 81
BLOCK

Z 48, 73, 80, 81
BR2.dat, 37
BR2.f90, 30, 37

CA, 10, 20, 20, 22

Ca, 10
ca, 20
categorical variable, 51
CD, 20, 20, 22, 27
Cd, 10, 10
cd, 20, 27
CG, conjugate gradient, 2
CHM, 8, 9
cl

Z 38, 49, 60
CM, 20
Cm, 10
cm, 20, 20
COMBINE (HV var), 72
command line options, 7, 8, 17, 23
COMMONBLOCKS (HV var), 73
conjugate gradient method, 2
convergence criterion, 10, 19

Cd, 10
Cm, 10
Cr, 10

convergence indicator, 14, 15, 19,
19–22, 27, 56

ca, 20
cd, 20
cm, 20
cr, 20
largest change, 20, 27

convergence information, 27
covariable file, 34, 52
covariable table, 34, 52
covariances of REML estimates, 58
CovarInfo (ApaX), 34
CR, 20, 20, 22
Cr, 10
cr, 20
CYC.log, 77, 82, 83

DATAFILE

88

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

Z 48, 60, 73, 80, 81
DATAFILE (HV var), 72
DATAFILE (mix99hv), 68
DATASORT

Z 48, 73, 80, 81
daughter yield deviation, 12, 13, 28, 47,

48
Deregression, 12, 23
Development features (DEV), ii
DYD, daughter yield deviation, 12, 13,

47, 47, 48

EDC, effective daughter contribution,
37, 37

effective daughter contribution, 37
effective record contributions, 43
eHat.data(i), 11, 29
EM REML, 54
EM, Expectation Maximization

for estimation of variance
components, 54

for Threshold-model, 51
ERC, 37, 43
estimation of variance components, 13,

23, 54
changing parameters during

estimation, 23, 54
continuing estimation, 13, 54, 57
restarting estimation, 54, 58
stopping evaluation, 54

exa99, 1, 40, 40–42

FACTOR, 12, 12, 48
first order autoregressive process, 67,

68, 69, 71
fixed variance components, 13, 57
FIXRAN (HV var), 72

generating observations, 12
genomic BLUP, 30
Gompertz-model, 16, 51, 52, 54

H2calc (ApaX), 35
Half-Chebychev, 16
heterogeneous variance, 1, 11, 22, 24,

32, 65, 65, 67, 76, 77, 80
heterogeneous variance adjustment, 7,

13, 14–16, 20, 82
heterogeneous_variance, 76
Hetlog, 70

HV, heterogeneous variance, 65
HV.data, 70, 70, 72–74, 79
HV.info(i), 70, 70
HV.pedi, 70, 71, 71, 73, 74, 79
HVbase_ResVar, 69, 75, 75, 76, 78,

81
HVbase_ResVarCLASS, 76, 78
HVbase_ResVarLEVEL, 76, 78
HVd.log, 83

I.log, 82
ID.Base, 75, 75
IDD, 11, 13, 47
IDD.data(i), 11, 29
IM, 8
imake4apax, 32
imake99, 4, 4, 6, 78, 79
Index.bin, 4
individual daughter deviation, 11, 13, 29,

47
information matrix, 58
instruction file

ApaX, 33, 38, 43, 45
CLIM command file, 5, 51, 54, 55,

60
Exa, 40
HV var, 71, 71
mix99hv, 68, 72–75, 77
preprocessor directive file, 4, 5, 7,

38, 51, 52, 54, 55, 68
solver option file, 5, 7, 7, 18, 23, 24,

54, 57, 58, 60, 74
INT-VAR (HV var), 71
INTEGER

Z 48, 60, 73, 80, 81
IOD, iteration on data, 2
IOP, 8
ITER, 6, 23, 23, 24, 54
ITER.LOCK, 24, 24
ITER.OLD, 24
iteration on data, 1, 1, 2, 4
iterative method, 2, 23

changing parameters during
iteration, 6, 23

convergence indicator, 19
determining convergence, 19
intermediate results, 6, 22
interrupting, 6, 22

89

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

maximum number of iterations, 10,
23

nested iterations, 51
restarting, 28
stopping criterion, 19, 23

JFilter (ApaX), 35, 36, 44

Lambda.data(i), 70
Lambda.log, 82, 84, 84
ls, 72
LS-model, 28, 67, 71–73

MACE model, 57
MAS BLUP, 30
maximum number of iterations, 10
MaxNonZ (ApaX), 34, 44
MC, Monte Carlo, 54
MC EM REML, 13, 14, 24, 54, 56, 57
MEA, 9
mean model, 22, 65, 65–69, 71–77, 80
Mean_model.slvM, 74, 77, 77
Mean_model_init.slvI, 77
MEB, 5, 8, 9
MEL, 5, 8, 8, 9
MEM, 5, 8
MERGE2 (mix99hv), 70, 72
MES, 5, 8
MISSING

Z 73, 80, 81
missing covariable, 53
missing observation, 53

heterogeneity observation, 73
missing trait, 51, 52
missing value, 11, 11, 29, 71
MISSVA (HV var), 73
MiX99 binary distribution, 4
MiX99_DIR.DIR, 55, 55, 60
MiX99_IN.DIR, 55
MiX99_IN.OPT, 55
mix99hv, 14, 67, 68, 68, 70–75, 77, 79
mix99i, 1, 4, 5, 6, 11, 14, 28, 29, 31,

32, 34, 35, 40, 45, 53–55, 60,
70, 78, 79, 82

mix99p, 1, 4, 4–8, 10, 11, 14–16, 18,
19, 25, 28, 29, 31, 67, 70, 75,
77–79, 82–84

MIX99PATH, 14, 56

mix99s, 1, 4, 4–7, 9–14, 17–19, 25, 28,
29, 31, 53–57, 60

mixed model equations, 2
MiXtoolmerge.f90, 29
MiXtoolms.f90, 29
MiXtools, 29, 29
MME, 1, 2, 2–4, 10, 19–21, 29–31, 34,

51
MMM, multiplicative mixed model, 65,

66
MODEL

Z 48, 60, 74, 80, 81
MODEL (HV var), 72
model validation, 29, 47
MODVAR (mix99hv), 69
Monte Carlo, 54
mp, 4, 43
multi-threaded versions of MiX99

solvers, 4, 8
multi-threading, 4, 8
multiple residual variance matrices, 32,

57–59, 76
multiplicative mixed model, 14, 15, 20,

65, 65, 74, 76, 77
mxntra, 11, 29

New features (NEW), ii, 43
Newton-Raphson algorithm, 51
noc, 18
nocov, 8
non-linear models, 51, 65
noQ, 8
nt, 5
number of data samples, 13, 56, 57
NumBVs (ApaX), 35, 35, 44

OK-file, 26
OK_mix99p, 6, 26
OK_mix99s, 6, 26
OriginalDir (ApaX), 35, 43
OutFile, 37

PAR, 8
PARALLEL

Z 74, 80, 81
PARALLEL (HV var), 73, 77
parallel computing, 1, 3, 4, 4, 6, 8, 11,

22, 23, 29, 30, 32–34, 65
apax99p, 30

90

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

mix99p, 4
multi-threading, 4, 8, 9

PARFILE
Z 48, 60, 73, 80, 81

parfile, 55, 58, 59, 59
PARFILE (HV var), 73
PCG, preconditioned conjugate

gradient, 2, 2, 4, 10, 20, 23, 27,
51, 54

PEDFILE
Z 48, 60, 73, 80, 81

PEDFILE (HV var), 73
PEDIGREE

Z 48, 60, 73, 80, 81
PEDIGREE (HV var), 72, 72
PEDIGREECODE

Z 48, 73, 80, 81
PEEK, 6, 22, 22, 23
PEV.bin, 33, 33, 34
PEVani, 37, 37, 45
PEVrnn, 42
PRECON

Z 48, 74, 80, 81
PRECON (HV var), 73
preconditioned conjugate gradient

method, 1, 2
preconditioner matrix, 2, 2, 14, 21, 22
preconditioning, 2, 10, 19–22, 32, 53,

55
block diagonal, 21, 21, 47
diagonal, 21, 21
full block, 21
updating, 14

predicted observations, 11, 29

RAM, 7
RANDOM (HV var), 72
random_seed, 14
RANSOLFILE (HV var), 73
RDB, 9, 9
RDL, 9, 9
RDM, 9, 9
RDS, 9, 9
RDU, 9
RDX, 9
REAL

Z 48, 60, 73, 80, 81
REAL-VAR (HV var), 72

REGRESS (HV var), 72
RELATIONSHIPS (HV var), 72
reliabilities, 30, 31, 36

approximate, 1, 30
exact, 1, 40
maternal genetic, 33
output files, 37
reversed, approximation, 43

multi-trait, 45
single-trait, 43

REML, 13, 14, 54, 55–57, 59
REMLlog, 54, 55, 58, 59, 59
resfile, 55, 59
RESID, 10, 29, 74
residuals, 7, 10, 11, 13, 29
restart iteration, 28
reversed reliability approximation, 33,

34, 43
multi-trait, 44, 45
single-trait, 43, 45

RHO (HV var), 72
runMMM, 70, 77, 78–80, 82

S.log, 82
SCALE (HV var), 73
Second level preconditioner, 19
SEED, 12, 14, 56
SEfnn, 42
SEfix, 42
SEreg, 42
SETLOSS (mix99hv), 70
sHat.data(i), 11, 29
simulating observations, 12
SireFile, 37
SiWi.data(i), 14
sm

Z 60
sm

Z 60
Sol_mn, 28
Solani, 28, 37, 48
SolaniB, 16
Solcommon, 28
Soldyd, 12, 28, 48, 50
Solfnn, 28
Solfix, 28, 52
SolfixB, 16
SolMS, 28

91

TECHNICAL REFERENCE GUIDE FOR MiX99 SOLVER

Solold, 29
SolPA, 28
Solpriv(i), 28
Solrnn, 28
Solreg, 28
SolSNP, 28
SOLTYP, 15, 53
Solunf, 29
SOLUNF (HV var), 73
solve_HVmodel, 77–79, 83
Solvec, 28, 28, 29
SORT_B (mix99hv), 69
SORT_R (HV var), 36, 72
sp, 8
sparse regression matrix, 18
Sparse_Matrix.DMPz, 34
srm, 18
ssGTABLUP, 28
STAND (mix99hv), 69, 75
standard errors

for fixed effects, 42
for variance components, 57

standard output, 25, 48, 82
StartDIM (ApaX), 34
STOP, 10, 10, 14, 23, 51
STOP, 6, 22, 22, 27, 54
STOPC, 15, 24, 77
STOPE, 13, 23, 24, 54, 56
stopping criterion, 19, 27

Ca, 10
stopping iteration, 22, 27
sum of selected model factors, 11, 29

threshold-model, 10, 23, 51, 51, 54
TITLE

Z 48, 60, 73, 80, 81
TITLE (HV var), 71
Tm10.trco(i), 4
Tm10.trco0, 4
Tmp4.pedi(i), 4
Tmp4.pedi0, 4

Tmp5.clas(i), 4
Tmp5.clas0, 4
Tmp6.diab(i), 4
Tmp6.diab0, 4
TMPDIR

Z 80, 81
TMPDIR (HV var), 73
TMPHV (mix99hv), 70, 77
TRAITGROUP

Z 73, 81
TRAITS (HV var), 72
TRGRP (HV var), 72
TRGRP (mix99hv), 69

VALID, 11, 15, 29, 47, 48
VAR (HV var), 73
VAR_I (mix99hv), 68
variance model, 14–16, 22, 65, 65–77,

80, 82–84
Variance_model.slvV, 77
VAROPT, 12, 13, 13, 15, 16, 20, 54, 56,

57
vceI, 58, 59
vceSE, 58, 59, 60
Vi.log, 82
Vs.log, 82, 82

WEIGHT
Z 74, 81

Weights (ApaX), 35, 35
within block strata, 67, 68, 69, 74
WITHINBLOCKORDER

Z 48, 74, 80, 81
WITHINBLOCKORDER (HV var), 72
work files, 2, 4, 4

YD, yield deviation, 11, 47
YD.data(i), 11, 29
yHat.data(i), 11, 29
yield deviation, 7, 11, 13, 29, 47
ySim.data0, 12

92

	Introduction
	Computing Methods
	Preconditioned conjugate gradient method
	Iteration on data technique
	Data work file reduction
	Equation family blocks

	How to run MiX99 solver programs
	Computing environment
	MiX99 solver programs
	Multi-threaded MiX99 solvers
	Running the solver

	The MiX99 solver option file
	Solver option lines
	Command line options
	Sparse regression matrix (srm)
	No residual covariances (noc)
	Second level preconditioner (sp)
	Determining convergence
	Choosing a suitable convergence criterion
	Effect of preconditioning on convergence

	External STOP file: stopping iteration
	External PEEK file: intermediate solutions during iteration
	External ITER file: changing parameters during iteration

	Output files of the MiX99 solvers
	Standard output
	Successful execution of MiX99 solver
	Solution files
	Formatted solution files
	Unformatted solution files

	Files for model validation purposes

	Reliabilities
	Approximate reliabilities using ApaX
	Approximate reliabilities for single-step
	Differences of reliability calculation and breeding value estimation
	ApaX instruction file
	Guidelines for determining blocking and JFilter
	ApaX Output files
	Example of ApaX instruction file

	Exact reliabilities using exa99
	Option file for exa99
	Exa99 output files

	Reversed reliability approximation
	Single-trait Reversed reliability approximation (AccurType 20)
	Multi-trait Reversed reliability approximation (AccurType 40)

	Daughter Yield Deviations
	Calculation of daughter yield deviations
	Pedigree file
	MiX99 instruction file
	MiX99 solver option file

	Solution files for daughter yield deviations
	Example

	Non-linear models
	Threshold-model
	Instruction file for mix99i
	Stopping criterion file for mix99s
	Solution files
	Example

	Gompertz-model
	Instruction file for mix99i
	Stopping criterion file for mix99s
	Solution files
	Example

	Estimation of variance components
	Running MC EM REML
	File with starting values of (co)variance components
	MiX99 instruction file
	MiX99 solver option file
	Number of data samples
	Determining convergence of REML parameter estimates
	Keeping certain variance components fixed
	MC EM REML for MACE

	Standard errors for REML parameter estimates
	Solution files for variance components
	Example

	Accounting for heterogeneous variance
	Computation environment
	Models for the heterogeneity of variances
	Currently supported variance models by MiX99

	Input data for the variance model
	Input data for mix99hv
	Instruction file for mix99hv
	Output files from mix99hv

	Instruction file for the variance model
	Variance components for the variance model
	Files with information for the variance component estimation

	Standardization of the multiplicative adjustment factors
	Files for the standardization procedure
	Standardization process
	Multiple residual variance-covariance matrices

	Running a model with heterogeneous variance
	Implementation on shared memory platforms

	Workflow and needed files for running multiplicative mixed model
	Example
	Output files
	Mi.log and Ms.log
	HVd.log
	CYC.log
	Lambda.log

	Acknowledgement
	References
	Index

