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Preface
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Therefore, the primary application of this software was in solving large-scale genetic
and genomic evaluations for national and international dairy evaluations. However, over
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be used. As a result, MiX99 is used in genetic evaluation of many livestock species,
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About this manual
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1 Introduction

MiX99 is a software suite designed for the estimation of breeding values. It includes
three types of programs for large models:

* preprocessor: mix99i
* solver: mix99s, mix99p
« approximate reliability calculators: apax99, apax99p.

An additional program (exa99) is available to calculate exact standard errors (SE),
prediction error variances (PEV), and accuracies for small models. Additional programs
to assist parallel computing using MPI (in mix99p, apax99p) include imake 99 and
imakedapax. The main purpose of this manual is to describe the command language
interface for MiX99, shortly CLIM, which is used to give instructions in a file to the
mix991i preprocessor. Some use of mix99s and exa99 is also described in chapters
on variance component estimation and reliability computations.

The preprocessor program mix 991 has two ways to give preprocessor instructions:
» the command language interface for MiX99, called CLIM, and
« the original interface, called directive file.

The directive file answers questions on data and statistical model used. CLIM is the
modern interface for the mix991 preprocessor and provides many advantages:

« Commands can be given in any order. This removes the requirement for giving
the commands in a strict sequence.

« Some commands have default values. Therefore, not all commands need to be
given.

« Commands have English language names. This makes the command instruction
file somewhat easier to read than a directive file.

« All information about the statistical model is given in the same model area, not
divided in several sections as in the directive file.

« Effects in the model are ordered in a way that first fixed effects are specified,
followed by the random effects. Within fixed effect, fixed regression effects without
nesting are given first.

1.1 Supported statistical models and beta testing features

The MiX99 software supports a wide range of statistical models, and a desired model
can be constructed by combining several basic model types, e.g., multi-trait random
regression model with weighted observations. The following models are available in
CLIM:

* least squares models
» multi-trait linear mixed effect model
» random regression model (with or without covariable table file)

* reduced rank (combining of traits)
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» genome information models like SNP-BLUP and G-BLUP
« multiple residual variances
« models with weighted observations
There are some specific models, however, that have not been implemented in CLIM:

» random regression with multiple nesting in additive genetics e.g., both maternal
and additive genetic effects

* MAS-BLUP (combining of effects)
* non-linear models: threshold and Gompertz models
These models are only available through the directive file interface.
In beta testing:
« order of effects on the model line is free unlike in a directive file.
1.2 Organization of the manual
This manual is organized as follows:
« This chapter gives some introductory remarks on how to use CLIM.

« The second chapter gives some theoretical background, and how it relates to the
way models are presented in this manual. In addition, some remarks on computa-
tional implementation issues are given which are necessary to understand some
of the commands.

* Input files are briefly described in the third chapter.

 The fourth chapter contains important information on how to use the solver and a
short description of the solution files.

 The fifth chapter describes in general terms how model is given in CLIM. The
section on basic models is a must read as it explains basic concepts of the CLIM
interface.

» The sixth and seventh chapters have single trait and multi-trait models, respec-
tively.

» The eigth chapter gives tools to express long and complex models simpler by
macros.

» The nineth chapter has genomic data models.
» The tenth chapter describes single-step models.

» The eleventh chapter has some special topics like blending of foreign information
and deregression.

» The last chapter has the syntax of all commands.

The manual concentrates on how to give different statistical models to MiX99 using
CLIM. However, some options are not covered in detail. Please study them in Chapter 12
which has a summary of all commands. Some of these commands are very important
such as MISSING and TMPDIR.
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Table 1.1: Command line options to CLIM, given on the mix991 command line.

——nproc NPROC
——datafile DATAFILE
——pedfile PEDFILE
—-parfile PARFILE
——checkdata
——usemacros
——keepsol
——keepindir

—-—-PAR

==(CIEIMI

-v, —-—-verbose

-V, —-version
——bindir BINDIR
——datadir DATADIR
——tmpdir TMPDIR

Option Effect
-h,--help Show options.
-d CLIM is executed, no preprocessing part in mix991.
File Mix99_DIR.DIR is produced.
-b Allows use of beta version feature(s), see list above.
-1 Long listing option of mix991.

Number of MPI processes.

Data file name.

Pedigree file name.

Variance file name.

Enhanced checking of the data file.

Use CLIM macros (DEFINE) and ranges (abcNN:MM).
Keep old solution files.

Do not overwrite MiX99 IN.DIR and .OPT files.
PARDISOQ library used for single-step preconditioner (default).
CHOLMOD library used for single-step preconditioner.
Show additional information.

Show version information.

Directory for MiX99 binaries. Default: (empty).

Data directory. Default: (empty).

Directory for temporary files. Default: (empty).

1.3

Invoking CLIM and command line options

The mix991 preprocessor reads CLIM commands from a command file aka CLIM file,
e.g., file named my_model.clm. CLIM interprets the commands in the CLIM file into
a directive file Mix99_DIR.DIR which is read by mix991i. Thus, the CLIM interface is
an automatic two step process.

CLIM is used by mix99i when a command file is given to it as a command line
parameter:

mix99i my_model.clm

Note that an original directive file is read from the standard input. Thus, executing
mix99i < mix99.dir

would expect an original directive file to be in mi x99 .dir.

Some new model features are not yet supported by CLIM, but a similar model may be
feasible. By using the command line option ’-d’ (Table 1.1), i.e.,

mix99i -d my_model.clm,

a directive file is created, after which the program stops. This directive file can be used
as a template for a directive file having the new model feature. When you modify a
directive file, please make sure that your intended modifications are correct. For more
mix991i command line options, see Table 1.1.
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1.4 Simple example
A simple animal model example with one fixed effect (mean) and a random additive
genetic effect (individual) illustrates CLIM:

DATAFILE simple.dat # Name of the data file
INTEGER individual mean # Integer column names in the data file
REAL % # Real number column name in the data file

PEDFILE simple.ped # Name of the pedigree file
PEDIGREE individual am # Additive genetics associated with "individual"
# am=animal model
PARFILE simple.var # Name of the variance components file
MODEL
y = mean individual # Model line

Some notes on the example:

» Everything after the 4’ character on a line is ignored and is considered as a
comment.

 All command information is on one line which can be continued using the ’s’
continuation symbol.

Statistical model is given on a line after the MODETL, command.

Model effects from integer columns are class effects.

Effects in the model are ordered: first fixed effect(s), followed by the random
effect(s). Within fixed effects, fixed regression effects without nesting are given
first.

Command names are not case-sensitive, although in this manual keywords are capital-
ized. For example, the command INTEGER can be written as integer. However, all
other names are case sensitive, such as mean column in the example above. Therefore,
the names of the columns in the model lines must be written exactly as they are in the
INTEGER and REAL commands.

2 Theory and notation

Here we introduce some notation and theory for an animal model, which we refer also
as pedigree BLUP. For a clear presentation of this and many other models in animal
breeding with examples, see Mrode and Thompson (2006). Some examples in this
manual are from this book.

2.1 Single trait model
A simple single trait pedigree BLUP (or animal model) has the form

y=Xb+Za+e

where
y is n x 1 vector of observations,

b is p x 1 vector of fixed effects,
X is n x pdesign matrix to link observations to appropriate fixed effects,
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a is g x 1 vector of random additive genetic effects,
Z is n x q design matrix to link observations to appropriate random effects,
e is n x 1 random residual vector.

Hence, there are g individuals with n observations, and there are p fixed effects.

In a simple mixed effects model, the matrices X and Z are incidence matrices. In
other words, these matrices have zeros and ones to indicate which effect corresponds
to which observation. However, if the model has regression effects, these matrices
have covariates. Thus, we call these matrices design matrices to indicate wider model
possibilities.

It is possible to have both regression and classification variables (categories). Classifi-
cation variables will be called class effects. For example, herd effect is a typical class
effect, an observation belongs only to one herd, and observations with the same herd
effect are predicted by the same estimate. Regression effects are not classification
effects. For example, a linear function has a coefficient in the design matrix. However,
the regression effect can be nested within a classification. In practice, the difference
between regression and classification effects is that a class effect number is in the
integer number column, but a regression coefficient is in the real number column of
the data file.

Common linear mixed effects model assumptions are

E(a) = 0 Var(a) = Ko2=Vg
Ele) = 0 Var(e) = Io?=R
E(y) = Xb Cov(a,e) = 0

where K stands for a matrix that describes the relationships between individuals. For
instance, the numerator relationship matrix A in a pedigree BLUP model or the genomic
relationship matrix G in a GBLUP model.

For the convenience of presentation, it is common to denote the residual covariance
matrix by R. We denote the genetic covariance matrix by V. With this notation, the
mixed model equations or MME to solve are

X'R'X X'R'Z /B B X/R—ly
ZR'X Z'R'Z+ VGil al| | ZR 'y
where ' denotes matrix transpose.

The model can be described by giving its effects. For example, if the above model had
a fixed herd effect (herd), and an individual genetic effect (a) for the additive genetic
effects, then it can be written as

y=herd+a+e

where e is the residual term. This can be considered as a model for one individual
record, although subscripts to indicate this were not used.
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2.2 Multiple trait model
Multi-trait model expands the single trait model matrices:

y=Xb+Za+e

where the matrices and vectors have a trait-wise structure. Thus, for t traits, we can
write

Yy = [ Y1 Y Y ]
e = [ e, € e, }
b, X, O 0
b- | 2| x=| 2 |
br 0 0 X,
a Z1 0 0
as 0 ZQ 0
a = N = .
a; 0 0 s Zt

where the vectors and matrices have the same meaning as before and the number in
the subscript corresponds to the trait number.

Multiple trait linear mixed effects assumptions are

E(a) = 0 Var(a) = Gy K =Vg
Ee) = 0 Var(e) = Ry®I=R
E(y) = Xb Cov(a,e) = 0

where matrix G, is a ¢t by ¢t genetic covariance matrix, and R, is a t by ¢ residual
covariance matrix. The mixed model equations are

X'R'X X'R'Z b] [ XR'y
ZR'X ZR'Z+G;'eoK'||a| | ZR'y

2.3 Solving mixed model equations

The mixed model equations are solved iteratively using the preconditioned conjugate
gradient (PCG) method. The following topics need to be considered when using the
solver program (see Technical Reference Guide for MiX99 Solver):

« jterative method
* preconditioner matrix
* iteration on data

« ordering of equations by blocks
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2.3.1 MiX99 solver: PCG iteration

The preconditioned conjugate gradient (PCG) algorithm is an iterative method to solve
linear models. Unlike direct method, the coefficient matrix is not inverted or decomposed.
Instead, every iteration updates the solutions by a defined algorithm.

An iterative solving method updates solutions until convergence is determined, or
the maximum number of iterations is reached. Thus, key values given before iteration
starts:

« Convergence criterion.

« Stopping value for the convergence criterion: A small positive value (e.g., 107°)
that determines when convergence has been achieved by some formula.

« Maximum number of iterations: A safeguard to ensure the algorithm terminates
even if no convergence has been reached.

In practice, the number of iterations needed by PCG typically does not exceed the
number of unknowns. While this has little practical significance for large-scale problems,
it can be useful for very small problems, as this limit is used by the solver. For large
problems, the maximum number iterations is often set between 5000 to 10000 although
convergence is usually achieved much earlier.

Note: The convergence criterion and maximum number of iterations cannot be specified
by CLIM. Their values must be provided to the solver program mix99s or mix99p,
not the CLIM preprocessor (see Chapter 4).

2.3.2 lteration on data

lteration on data (IOD) means that MiX99 does not make or store the coefficient matrix
of the mixed model equations in memory. Every iteration of the PCG method operates
on the coefficient matrix by performing matrix times vector products. This involves the
model matrices X and Z, the pedigree list and/or genomic marker data or relationship
matrix, and the variance component information. In practice, IOD means that reliabilities
must be calculated by a separate program because the coefficient matrix is never made
explicitly.

2.3.3 Ordering of equations by blocks

We described mixed model equations such that the equations are ordered by effect,
which is typical in the literature. This is not always computationally optimal. It is better
to order equations of an individual and its close relatives together in the same block
when the model has a genetic effect with a pedigree based relationship covariance
matrix. Such ordering can lead to data locality which supports efficient computations,
minimizes communication between processors in parallel computing, and allows effi-
cient algorithms for reliability computation. Equations can be ordered by common family
or contemporary blocks, e.g., by a common environment variable. For more information
see Chapter 3.3.3.

CLIM has the optional command WITHINBLOCKORDER (Chapter 12.2.43) that can be
used to indicate which effects are within block equations. For example, if the herd
number is the block code, then it is natural that individual related effects (such as the
direct genetic and permanent environment), and herd contemporary effects (such as
herd-year-season) are within the block. The use of effects in within blocks affects how
the preconditioner is made and instructions to the preconditioner are given for the mixed

7
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model equations. Furthermore, the MPI parallel computing implementation (mix99p)
depends on good block ordering. When reliabilities are estimated by ApaX (apax99
or apax99p), block information is used to determine the level of approximation. Only
effects within blocks are considered in the reliability calculations.

The preprocessor automatically orders equations if the user does not provide specific
within-block information. However, this may result in longer solving times for large
evaluations, and it may affect approximation of reliabilites. In a multi-trait model, the
different trait equations within an effect are always ordered next to each other. This
ensures efficient solver performance.

2.3.4 Preconditioner

PCG method is a flexible iterative solver. While the core algorithm conjugate gradient
(CQ) is the same (with small variations) across implementations, the preconditioning
approach varies. Preconditioning aims to improve convergence by transforming the
coefficient matrix such that its eigenvalues are near to each other or clustered. This is
achieved by approximating the inverse of the coefficient matrix. If the approximation is
exact, PCG would converge to the correct solutions in a single iteration. However, in
practice, the approximation is never perfect.

A variate of preconditioners are available, each having different memory requirements
and time constraints. For large systems of equations, it is impossible to use the most
memory-intensive preconditioners implemented. In fact, making the preconditioner can
take as much as half of the total preprocessing time.

The PRECON command is used to specify the main preconditioner. There is a separate
second-level preconditioner available for marker effect. The command to define the
main preconditioner is often like:

PRECON b b b b b b

where each b’ letter denotes a block diagonal preconditioner. When no preconditioner
is specified, the default preconditioner is 'd’ for diagonal for a single-trait model, and b’
for block diagonal for a multi-trait model.

The order of the letters in the PRECON command is important. Preconditioning is defined
in the following order:

« Within block effects.
» Across block fixed effects.
« Across block random effects.

The preconditioner definitions for the within block effects follows the order specified
by the WITHINBLOCKORDER command. |If no WITHINBLOCKORDER has been given,
the last effect in the model is treated as the only within block effect. Preconditioners
available for the within block effects are:

d (Diagonal): Uses only the diagonal elements of the MME coefficient matrix.

b (Block diagonal): Applies block diagonal matrices, where the size of each block
matrix is equal to the number of equations belonging to an effect level.
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Although diagonal and block diagonal preconditioners are functionally the same, when
an effect level has a size of one as in a typical single trait model, they are computa-
tionally different, which may lead to small differences in the solutions. Furthermore,
computations are simpler for a diagonal preconditioner. Use of a block diagonal pre-
conditioner is often computationally most efficient for multi-trait models. However, for
complex multi-trait random regression models, they may generate large precondition-
ing data files with large 1/O. In such cases, it may be necessary to use a diagonal
preconditioner.

After specifying the within block effects, the next part of the PRECON command defines
the preconditioning for the across block fixed effects. Several options are available,
listed below in order of increasing computational and memory requirements:

d (Diagonal): Uses only the diagonal elements of the coefficient matrix.
b (Block diagonal): Uses block diagonal matrices of size equal to an effect level.

m (Mixed): A hybrid approach. A block diagonal preconditioner is applied for the levels
of the first across block fixed effect, while all remaining across block fixed effects
are in one superblock.

m+string (Mixed plus): A more flexible version of the mixed preconditioner, allowing
the user to define multiple superblocks using a sequence of integers (see below).

f (Full block): Uses the full matrix corresponding to the across block fixed effects.

In most cases, the block diagonal (b) preconditioner offers a good balance in terms of
computational efficiency. However, depending on the model structure, other options
may give some advantages.

The mixed preconditioner divides the MME coefficient for the across block fixed effects
into two parts:

First part: includes all factors belonging to the first across block fixed effect. In case
general regressions (across all data) are specified, also they are included here.
Block diagonal preconditioner is used.

Second part: includes all remaining across block fixed effects. One large precondi-
tioner matrix of the size number of equations belonging to the second part will be
used.

To optimize performance, the across block effect with the most levels should be defined
as the first effect (in the model) when using the "m" option.

The "m+" option allows more control by defining superblocks using a sequence of
integers. The number of specified integers must be equal to the number of across
block fixed effects. Fixed effects belonging to one superblock must be specified with the
same integer number. The first given integer number must be 1 and numbering is in
ascending order. Examples, assuming 4 across block fixed effects are specified:

* m 12 3 4: same as block diagonal (b) preconditioner.

« m 12 3 3: effects one and two use block diagonal preconditioners, and effects
three and four are group into one superblock.
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« m1122: two superblocks are defined.
* m1222: same as the basic mixed ('m’) block.
* m1111:same as the full ('f’) block.

The last part of the PRECON command defines the preconditioner for across block
random effects. Only two options are available:

d (Diagonal): Uses only the diagonal elements of the coefficient matrix.
b (Block diagonal): Uses block diagonal matrices of size equal to effect level.

If no across block random effects are present in the model, this part can be omitted in
the PRECON command.

Note that giving PRECON n disables preconditioning and gives the plain conjugate
gradient iteration. This option is useful when computing reliabilities only by apax99 or
exa99, as no preconditioning is required in their computation and skipping the compu-
tation of preconditioner saves both time and memory in the preprocessor mix991.

In this manual, all examples use default preconditioner. Thus, although no PRECON
command is given, the preconditioner varies by model: single trait models use diagonal
preconditioner, multi-trait models use block diagonal preconditioner. The preconditioner
used is informed by the preprocessor mix99i and by the solver mix99s. In the
preprocessor output, there are lines like:

Preconditioner information:

Across block fixed : block diagonal
Across block random : block diagonal
Regression matrix : block diagonal

1. within block effect : block diagonal
In the beginning of the solver output, this same information is given as

Preconditioner information:

XpX : b across block fixed

MpM : b regression matrix

WPW : b within block effects

WPWa: b across block random

d=diagonal, b=block diagonal, f=full block

2.4 Second-level preconditioner (sp)

Second-level preconditioner for can be useful when there are several effects that
model genetics. For example, model has both marker effects and polygenic effects.
The second-level preconditioner is applied to all regress matrix effects (REGMATRIX)
simultaneously. It is also applied to all marker effects in the sssSNPRL.UP model. The
inverse of the given value for the second-level preconditioner is used to multiply all the
regress matrix and marker effect values after the first level (regular) preconditioner has
been used. mix99s For example, giving value ’-sp 100’ for the solver mix99s, e.g.,
mix99s -s —-sp 100, can enhance convergence considerably.

3 Input files

Most of the information is read from input files. The input files are:

10
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 data file,

genotype file(s),

* pedigree file,

* variance components file(s),
« other files.

Individuals in the data and pedigree files must be in the same order. In other words,
when data records have been sorted by an individual ID code, then the individuals must
be in the same order in the pedigree file as well. The pedigree can be ordered using
the RelaX2 program which is a separate utility program for pedigree analysis from Luke
(Strandén and Vuori, 2006).

In some models, the genotype file must follow the data file order as well, but not always.

The input files have a certain quite simple format. In the following, the formats of
these files are described briefly. For a more complete explanation, see the MiX99
pre-processor manual: Technical reference guide for MiX99 pre-processor.

3.1 Data file

The data file contains the observed data to be analyzed. Name of the data file is defined
by the DATAFILE command, For example, using data.dat as the data file is defined
by the command DATAFTLE data.dat. The data file has observations and model
effect information such as classification effect numbers and regression covariates. The
default format is ’text’, which is a text format data file with columns separated by one
or more spaces. A rarely used alternative is the Fortran unformatted binary data file.

Each record, i.e., line in a free format file, has two parts:

» Integer numbers The integer number data part consists of positive integer
numbers for all class variables in the model. In addition, it may contain sorting
variables and indices such as an index for heterogeneous residual variance.

* Real numbers These are observations, covariates, and weights.

The data file may contain columns that are not used in a model. Because the data file
can only contain numeric data, alphanumeric data is only allowed in the record after
the real number columns in a free format text data file.

All integers are coded using the default machine integer type and must be positive.
Typically, integer numbers must be less than 2,147,483,649. Missing integers must be
coded as zero (0). For real (floating-point) numbers, missing value can be coded by
any real number specified using the MTsSTNG command. By default, this value is zero.

3.1.1 Example: Multiple trait data

Consider data for a two-trait model. The file has six columns: 4 integer columns, and 2
real columns. Note that the real number columns in this example have integer values.
However, for the preprocessor, these are real number columns because observations
can have any real value. The file named example.dat is:

11
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ID code; sireo herdxyears ones, trait 1, trait 2,

4 1 1 1 90 200
6 3 1 1 110 190
8 5 2 1 120 140
9 5 2 1 130 120
10 7 2 1 120 130

The subscripts of the header names are column numbers in the integer and real column
areas. No header line is allowed to be present in the data file.

This data file can be described with the following CLIM commands:

DATAFILE example.dat # Name of the data file
INTEGER IDcode sire herdXyear ones # Integer column names
REAL traitl trait2 # Real column names

3.2 Genotype file

The genotype file contains the genotypes. There can be multiple genotype files. Con-
sequently, there is no single command for a genotype file. For example, genotypes
may be used in a SNP-BLUP model where the genotypes are regression covariates
defined by the REGMATRIX command, and the genotypes are in a file defined by the
REGFILE command. There can be multiple REGMATRIX commands each with its own
REGFILE. When a single-step SNP-BLUP model is used, the genotype file is defined
by the SNPFILE command.

Alternative formats are available for genotype file. However, it is always assumed
that genotype is a number 0 for homozygous first allele, 1 for heterozygote, and 2 for
homozygous second allele. Missing genotype is sometimes allowed but it has to be
single digit number such as 3. In general, genotypes are considered as covariates
in a regression model. Thus, an additive genetic model is assumed. Please see
REGMATRIX and SNPMATRIX commands for the formats.

Each record, i.e., line in a free format text file, of a genotype file has two parts:

 ID code. The ID code is a positive integer number for the ID code of individual
owing the genotypes.

» Genotypes. These are genotype values.

The genotype file may contain columns that are not used in a model. Because the
genotyped file can only contain numeric data, alphanumeric data is only allowed if
FORMAT option for reading in Fortran format is allowed.

3.3 Pedigree file

All pedigree information is contained in the pedigree file. Every individual in the
pedigree must have one and only one record in the pedigree file. Each pedigree record
has three or four integers, where the fourth integer is optional. Columns of the pedigree
file are

12
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1 2 3 4
ID code sire code dam code block code

(or maternal grand sire code in  (optional)
case of a sire model)

The integers must be separated by at least one space. A Pedigree file that is defined to
be my.ped using the CLIM command:

PEDFILE my.ped

When a block code is given, the pedigree and data files must be sorted in the same
order by the block code. For more information, see Chapter 3.3.3.

3.3.1 Example: Pedigree file for the data

Let the pedigree file in the file my . ped for the multi-trait model data in the example
Chapter 3.1.1 be

ID code; sire> dams

1 0 0
2 0 0
3 1 2
4 1 2
5 3 4
6 3 4
7 5 6
8 5 6
9 5 6
10 7 8

3.3.2 Unknown parent groups

Pedigree is often incomplete and has missing parents. Missing parents can be
replaced by genetic (unknown parent) groups (UPGs). Similar missing parents are
assigned to the same UPG. In the pedigree, an UPG code is used in place of the
missing parent. This code must be a negative integer number to distinguish it from an
existing pedigree ID code. An UPG code should not have a record in the pedigree file.

For example, the pedigree above (Chapter 3.3.1) had two individuals (1 and 2) that
had unknown parents. The missing parents can be assigned to be UPGs (-1 for an
unknown sire, -2 for an unknown dam). The pedigree file remains the same for all the
others. The changed part of the pedigree file is:

ID code; sire> dams
1 —1 -2
2 ~1 -2

3.3.3 Block code

There are some advantages to having a block code in the data and pedigree files.
Block codes are essential for the calculation of reliabilities in ApaX and for the MPI
parallel computing implementation in mix99p. However, for some large evaluations,
the use of the block code with data sorting can improve computational efficiency by
improving cache utilization through data locality. Otherwise, the use of a block code
may reduce the computation time very little and can often be omitted. The DATASORT

13
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command is used to define the block code column in the data file, but the pedigree file
has a fixed column structure, assuming the block code is in the fourth column.

The block code in a data file is defined by the BLOCK option in the DATASORT command.
For example, DATASORT BLOCK=herd defines integer column herd to have the block
code in the data file. The main sort key of the data file is the block code (now herd), within
which the individual ID code, referred to as the PEDIGREECODE, is sorted. An example
iS DATASORT BLOCK=herd PEDIGREECODE=IDcode. Even if an individual has
observations in multiple data file blocks, the individual must appear in only one of the
blocks in the pedigree file. This special case is considered in a separate section on
MPI parallel computing. Note that specifying a BLOCK in the DATASORT command is
optional. See below.

An individual's block code is specified in column 4 of the pedigree file. When the
pedigree file has the block code column, then every individual must have a block code.
In addition, the block code must also be the same in the data file. An individual with
records in different data blocks (e.g. in different herds) have to be coded in the pedigree
with only one of the block codes where it has observation(s), e.g., the block with most
of its observations.

Typically, a block code is an environmental unit such as a herd where an individual’s
data have been observed. If an individual has no observations, but is a parent of an
individual with observation(s) in the data file, then it is natural for the parent with no
observations and its offspring to have the same block code. For example, a dairy cow
with no observations will be assigned to a block with most of its daughters. This ensures
efficient computations in models with a pedigree-based relationship matrix.

When an individual does not belong to any equation family (no observations to give
a block code), or it is in many different families through relationship information (e.g.
dairy sires have progeny in many herds), an extra block code can be generated. We
recommend a separate block code for individuals with close pedigree links to many
different equation family blocks. For example, sires in a dairy cattle population can be
assigned to a single block code with a number greater than any of the block codes in
the data file. Note that a block code can never exceed the maximum integer number of
2147483647. It is advisable to split a large block into several smaller blocks. MiX99
supports as many blocks as possible at the same time, and the block with the most
individuals determines some memory requirements, e.g. in making the preconditioner.

3.4 Variance components file

The variance components file contains (co)variances for all the random effects in
the model. The size of these matrices may vary based on the model specification.
The random effects are numbered in the order they appear in the RANDOM command.
Thus, the random effects should appear in their numbering order in the model line(s),
i.e., on the model line(s) from left to right, the random effect one is before random effect
two etc. A RANDOM command is not required if the only random effects in the model
are the individual additive genetic and the residual effects. The residual effect always
assigned the last random effect number, and the additive genetic effect is assigned the
second-to-last random effect number.

The variance components file has the values of the (co)variance components. Two file
formats are available:

14
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» the traditional sparse matrix format
» a mixed matrix format.

It is also possible to specify that the identity matrix is used for all (co)variance matrices.
This can be convenient when setting initial values for variance component estimation.

The name of the variance components file is defined by the PARFILE command. For a
traditional sparse matrix file (e.g., ST.var), the command is

PARFILE ST.var
For a mixed matrix file (e.g., AMmixed.var), the command is
PARFILE MIXED AMmixed.var

It is possible to specify the variance components in the CLIM file using the command

PARFILE CLIM

Then, the contents of the file are in the CLIM file after the PARFILE command. When
all random effects are assumed to have an identity matrix as their (co)variance matrix,
then the command is

PARFILE IDENTITY

When the MIXED, CLIM, or IDENTITY option is used with the PARFILE command, the
variance components are written to the Tmpfile.par file in the temporary file directory,
using the traditional sparse matrix format.

The traditional sparse matrix format has one line for each non-zero (co)variance. Each
line consists of 3 integers followed by a real number representing the (co)variance
value. For example, 1 1 1 3.0 indicates that random effect 1 (the first ’1’) has a
variance of 3.0 for the first trait (position '1 1’). The first integer is the random effect
number, followed by two numbers for the row and column position, and finally the
(co)variance parameter. The row-column position specifies the position of the element
in the (co)variance matrix. Only the lower (or upper) triangle of the matrix needs to be
specified. If a (co)variance value is not provided, it is assumed to be zero.

The order of the lines in the this type of file does not matter. Identifying the number of
the random effect is easy. However, correctly numbering the (co)variances, i.e., the
row-column numbers, can be challenging in some models. For example, in a multi-trait
model with a random effect that has multiple variances, such as in a random regression
model, the numbering is done sequentially by each trait and from left to right on the
model line. Therefore, some exira care is needed. The preprocessor output of the
(co)variance matrix can be used to verify that the row-column numbers have been
entered correctly. This is particularly important when random regression effects are
missing in a multi-trait random regression model. For a more detailed explanation, see
the examples on multi-trait random regression effects model (Chapter 6.4).

The mixed matrix format file for variance components can include various matrix formats,
such as sparse, lower triangle, diagonal, and identity. The first line of a (co)variance
matrix in the MIXED matrix format specifies the random effect number and the format
type used. For the four formats, the line for the first random effect is
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» for the sparse format: 1 SPARSE

« for the lower triangle format: 1 LOWER
« for the diagonal format: 1 DIAGONAL
« for the identity format:1 IDENTITY.

This line is followed by the (co)variance values in the specified format. The SPARSE
format is identical to the traditional sparse format, except that the random effect number
is not needed, as it has already been provided. The LOWER dense format includes
a lower triangle of the (co)variance matrix. The DIAGONAL format requires only the
diagonal values, i.e., the variances. The IDENTITY format does not include any values
after specifying the format type, as the identity matrix is used for the (co)variance matrix.
The (co)variance components in a variance component file in the MIXED format must
be specified in numerical order, from the first to the last random effect.

3.4.1 Example: Variance component file
We illustrate the variance components file for the multi-trait model in Examples Chap-
ters 3.1.1 and 3.3.1. Let the genetic and residual (co)variance matrices be

3.0 2.5

Go = { 25 25

}andRoz{m 2.0]7

20 7.0

respectively. The genetic correlation between the traits is about 91%, and the residual
correlation is about 29%. Heritability of the first trait is 30%, and the second trait is
about 26%. The traditional (co)variance parameter file has format

Random effect; Row, Columns Covariance
1

NN N e e
N RN R e
NN R NN

A MIXED format variance components file using SPARSE and LOWER is
SPARSE
1

e
s}
=

o o O

NN R NN R W0
o

NS e e I N el
o

SN NN W

SRS

o O O

LOWER
1 LOWER

3.0

2.5 2.5
2 LOWER

7.0

2.0 7.0

Assuming the variance matrices were diagonal, the MIXED variance components file is
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1 DIAGONAL
3.0
2.5

2 DIAGONAL
7.0
7.0

A MIXED variance components file can mix the four formats in the same file. For
example, a hypothetical variance components file could be:

1 IDENTITY
2 DIAGONAL
2.1
2.2
3 LOWER
3.1
3.0 3.3

4 SPARSE

NN
N =
[N NI N )]
v o e

3.4.2 Multiple residual (co)variances

When there are multiple residual (co)variances, an additional residual (co)variance
file must be specified using the RESTDFILE command. The format of this file is the
same as the regular (co)variance file described above. However, the first number on
each line is not the random effect number, but the number of the residual variance class.
The numbering of the residual (co)variance classes has to start from one (1) and go up
to the total number of residual (co)variance classes. Each observation has its residual
(co)variance class number in the INTEGER column fields of the data file. Note that
a residual (co)variance (matrix) has to be also included in the variance components
file. Residual (co)variance values in the variance components file are ignored by the
solver program (mix99s or mix99p), but are used by the reliability approximation
program (apax99 or apax99p). The values in the (co)variance components file are
often weighted averages of the values in the multiple residual covariance file and are
used in the calculation of heritability in the reliability estimation program.

4 Using the solver

After successfully running the preprocessor, the solver (mix99s/mix99p) can be
executed. The solver program assumes that the user gives some instructions about
some aspects of the iteration method, the output files to be produced, and possible
special computations to be performed (see Chapter 11). The instructions can be given
either through standard input or through command line options. The use of both requires
the use of the -1 option on the command line (see below for more details). By default,
the instructions from the standard input are ignored when command line options are
given.

In this manual, the command line option approach has been used most of the time for
simplicity. This method is only possible when calculating breeding values. The easiest
way to run the solver is to give the —s option, which uses default values in solving
the breeding values and produces standard output files. So you give mix99s -s.
Examples in this manual have been created with this option unless otherwise noted.
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Some other common command line options are
* —n or -x for the number of iterations
» —ca or -ca for Ca convergence criterion
» —cd or -cd for Cd convergence criterion
« —cr or —cr for Cr convergence criterion
» —cm or -cm for Cm convergence criterion

For example, giving mix99s -n 1000 —-cr le-7 sets the maximum number of
iterations to be 1000, and the Cr convergence criterion stopping value to be 10~7. Thus,
the iterations are considered converged when the Cr convergence criterion has value
less than 10~7. By default, the convergence criterion is Cd with a stopping value 107,
and the maximum number of iterations is 5000. These defaults may not be sufficient for
some models and traits. Therefore, it is important to check that convergence has been
reached and that the iterations have not terminated prematurely due to reaching the
iteration limit.

The mix99s solver computes the values for the four convergence criteria in every
iteration, although only one is used to determine convergence. Thus, it is possible to
monitor every one of them. Below formulas for the criteria are given. Let the MME be
expressed as Cs = r where C is the coefficient matrix, r is the right-hand side vector,
and s is the vector of unknowns to be solved. Denote by a the solutions of the additive
genetic effects which can be associate with relationship matrix K as in Chapter 2.1.
The four convergence criterion are printed to the Conlog file by the mix99s solver in
the following order:

)

r—Ca®) (r — Ca®
Cagy \/ ( ) ( )

TIT,

Y

r — Cs®) (r — CsW
Cr \/< ) )

r'r

\/ (r — C3W) M- (r — C3®)

Cma = ' M-1lr ’
o (g(k) _ g(kq))’ (g(k) _ g(kq))
v COICO I

where
* k is the iteration number.

» Ca is the relative difference between left-hand side and right-hand side (residual)
of the part of the MME which includes the equations of the additive genetic effects.

Cr is the relative residual of all effects of the MME.

Cm is the preconditioned relative residual of the MME.

Cd is the relative difference between solutions from consecutive iterations.

18



Command Language Interface for MiX99 (CLIM)

Instructions to the solver can also be given in the standard input. This allows a wider
range of options and methods than are available in the command line options. Note,
however, that giving command line options will by default result in the standard input
not being read. It is sometimes more convenient to have the instructions in a file than
to type them into the program every time. This can be achieved by reading them from
the standard input, e.g., mix99s < solver_option_file.slv. Giving

mix99s -n 1000 -cr le-7 < solver_ option_file.slv

will not read commands from the file solver_ option_file.slv butproceed with
the command line options only.

The —i command line option causes the solver option file (or standard input) to be read
first AND the command line options to override the corresponding solver option
file values:

mix99s -1 -n 1000 -cr le-7 < solver_option_ file.slv

An example of a breeding value evaluation instruction file is

H # RAM: Demand: H=high, M=medium, L=low, X=extra large
2000 1.0e-7 R F # STOP: Max.iter., Conv.value, Conv.criterion, Force

N # RESID: Residuals calculation

N # VALID: Model validation

N # VAROPT: Variance options for VCE, PEV, HV

Y # SOLTYP: Solution file options

The first letter H requests the high memory version, which is usually used. The medium
and low memory versions are rarely used because even the high memory version uses
memory efficiently. Note: mix99p has an eXtra large memory requirement approach
by letter X that requires some more memory than H but is much faster.

The most important line is the second line where PCG iteration information is given:
« the number of iterations in the PCG method is limited to 2000 iterations
- convergence value is set to be 1077
« convergence criterion is set to Cr by letter "R”
+ the above values are "F”orced to be used.
If ”F” is not given then default values are used. The default values are
« limit to 5000 iterations in the PCG method
- convergence value is 10~
 convergence criterion is Cd or letter "D”.

The first three options after the PCG information are not that important for typical
breeding value evaluations, and their value are in the example is "n” for no. In the
chapter on special topics (Chapter 11) some of these options will be considered. The
last ”Y” is important. It indicates the type of the solution files. The letter ”Y” indicates
standard text format solution files. If the last letter is "N”, only a binary format solution
file named so1vec will be created having solutions for all the unknowns.
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4.1 Multi-threading

The solver can use multi-threaded computations if the computing environment allows
it and the multi-threaded version of the solver is used. MiX99 executables parallelize
some of the calculations, especially large dense matrix computations.

Number of computational threads (not to be confused with number of MPI processes)
used by the multi-threaded MiX99 executable is controlled by one or more environment
variables depending on how the dense matrix libraries have been compiled in the
executables. To cover most of the cases, the following environment variables need to
be set:

export MKL_NUM_THREADS=10
export OPENBLAS_NUM_THREADS=10
export GOTO_NUM_THREADS=10
export BLIS_NUM_THREADS=10
export OMP_NUM_THREADS=10

The multi-threaded “single process” solver spawns given number of computational
threads (ten in the example above) when calculating the multi-threaded operations.

The multi-threaded parallel MPI solver (mix99p) parallelizes calculations, thus, using
both MPI and the multi-threading. Depending on the operation, either one or all of the
MPI solver processes utilize multi-threading. This means that the overall number of
computational threads can be up to number of MPI processes times the given number
of threads, but this depends on the used model.

The multiple threads can be taken to use by the above mentioned environmental
variables or by solver command "nt". Effect of the nt option depends on the statistical
model and memory option (see Chapter 4.6) used. Models that typically benefit from
multi-threading are such that use genotypes. For example, CLIM has command GBLUP,
COVFILE, SSGBLUP REGMATRIX, or SNPMATRIX. When the genomic relationship
matrix or marker matrix is in RAM memory, efficient parallel computing can be used.

INmix99p:

1) no single-step model: all processes use the same number of threads given by the
command.

2) single-step method with the low memory option "MES" is used: the same as for
the no single-step model.

3) single-step with memory options "MEL"/"MEB"/"MEM": only the master process
will use the number of threads given, all other processes use only one CPU.

The command line option is like:
mpiexec -np 4 mix99p -nt 10 -MEL -s

which uses 4 processes in MPI but 10 CPU threads for the master process. When the
solver commands are in a file, the "nt" command is on the first line in format like "nt 10".

The logic behind the differences is that option “MEL"/"MEB"/"MEM" lead to the Master
process to have an additional computational work that will benefit from multi-threading.
However, instructing all the other processes to have as many threads may lead to use
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of too many threads and inefficient computations. Because this may be often the case,
the optimum number of threads in non single-step or "MES" option can be small.

4.2 Terminating iterations cleanly

In some situations, it might be useful that the iteration process is stopped in a controlled
fashion before the specified limit of the convergence criterion has been fulfilled. The
solver programs can be instructed to stop after the current round of iteration by creating
a file named sTOP in the directory where the solver is executed. Then, the solver
will write the most recent solutions to the standard solution files. When MPI parallel
computing is applied, the sTOP file has to be accessible by the master process. In case
heterogeneous variance is accounted using the multiplicative mixed model approach
described in Meuwissen et al. (1996), a sTOP file can be used to stop the cycling
between the mean model and the variance model. Then, after the current adjustment
cycle is finished, the program will continue with iterations on the mean model until the
set value for the convergence criterion is reached or the sTOP file is provided a second
time. The solvers will erase the sTOP file from the directory to avoid trouble in future
analysis.

4.3 External PEEK file: intermediate solutions during iteration
The solver programs can be instructed to store the intermediate solutions during the
iteration by creating a file named PEEK in the directory where the solver is executed.
The existence of the PEEK file is recognized by the solver at run time, the content of
the file is read to memory, and the PEEK file is then removed.

The PEEK file may be either empty or contain one or two integers:
[-]PITER PSTEP

If the PEEK file is empty, solutions of the current iteration are stored to solution files
named with a _<ITER> suffix, where <ITER> is the iteration number of the current
iteration. If the PEEK file contains one integer (PITER), a target iteration number, the
solutions of that iteration is stored to files with a _<1TER> suffix. Solutions of the
current iteration are also stored if the target iteration has been passed, i.e., current
iteration number is larger than the target iteration specified in the PEEK file. If the target
iteration number is negative (-PITER), the file name suffix is constant _ PEEK instead
of the changing iteration number (_<ITER>).

If the PEEK file contains two integers ([-1PITER PSTEP), for example
20 100

the solutions are stored starting from the iteration PITER (20 in the example) and
repeating after every PSTEP iterations (100). The default file suffix is constant _PEEK
so that the possible large solution files do not fill the file space. With a negative starting
iteration number (-PITER) the file suffix contains the iteration number (_<TITER>) but
this must be used carefully.

The starting iteration (PITER), iteration step (PSTEP), and the choice of the file suffix
can also be specified by using the command line options.
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4.4 External ITER file: changing parameters during iteration

It may also be useful to be able to modify the parameters of the iterative method during
the iteration. This can happen, for example, if it is realized that the original maximum
number of iterations is found to be too low or limit for the convergence criterion too tight.

The solver programs can be instructed to update some of the iteration parameters by
creating a file named TTER during the execution in the directory where the solver is
executed. When MPI parallel computing is applied, the TTER file has to be accessible
by the master process. The ITER file is read in the beginning of each PCG iteration
and affect the iterations henceforth.

Content of TTER is either one or two lines similar to solver option file lines with optional
comment lines. The first line contains the same parameters as the STOP line of the
solver option file:

# STOP: maxiter, tolerance, criterion (A/R/M/D), [enforce(F)]:
6000 1.0e-6 M F

or

# STOP: maxiter, tolerance, criterion, [enforce (F), maxiter non-linear]:
6000 1.0e-6 M F 1000

The fifth parameter is used by threshold-models and deregression. Parameters on the
STOP line control the normal PCG iterations of the solvers.

For estimating variance components, optional second line similar to STOPE line of the
solver option file can be specified:

# STOP: maxiter, tolerance, criterion (A/R/M/D), [enforce(F)]:
6000 1.0e-6 M F

# STOPE: REMLrounds, nSamples, conv.value VCE
200 10 1.0e-10

Parameters on the STOPE line control the MC EM REML iteration.

Alternatively, in the case of heterogeneous variance, the second line of TTER file is
similar to STOPC line of the solver option file:

# STOP: maxiter, tolerance, criterion(A/R/M/D), [enforce (F)]:
6000 1.0e-6 M F

# STOPC: max.HVcycles, conv.value for lambda estimates (criterion Cd~"2)
100 1.0e-9

In order to create the TTER file safely without the danger of the solver program concur-
rently reading possibly incomplete file content, a lock file ITER . LOCK can be created:

touch ITER.LOCK
cp —f ITER.NEW ITER
rm —-f ITER.LOCK

The solver does not read an existing TTER file as long as the lock file TTER . LOCK exists.
After reading and accepting the TTER file successfully, it is renamed to TTER. OLD.

Reading of the TTER file is notified by a message listing the changed parameters:

kokkkkkkkkxrxrkkhkkkkkkkkkkx M 1 X 9 9 s M € S S @ g € hkkrkrxkkhkhhhrhrkhkhkkhhkhxdhk

Message: Time: 13:30:10.7 02.07.2019
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Updating iteration parameters from ITER file:

— Solver STOP line in ITER file:

>> 6000 1.0e-6 M F
- Max. number of iterations changed from 5000 to 6000.
- Stopping criterion value changed from .5e-6 to .1E-7.
— Stopping criterion changed from D to M.

— Renaming ITER file to ITER.OLD.

Ak hkhkhh kA hA kA A A Ak A hhhhhkhh kA kA A A A hkhkhkhkhhkhkh kA kA kA A hhkhkhkhhhhkhkhk kA A Ak Ak A hhkhkhkhkhhkhkhkhkhkxkxkkhkkk

4.5 The solver option file details

The mix99s and mix99p solvers can be instructed with different parameters to control
memory use, the iteration process , the solving of non-linear models (threshold models,
multiplicative models for heterogeneous variance adjustment); to advise mix99s to
estimate variance components; or to give instruction to the solver programs to calculate
yield deviations, residuals, etc. The solver options must be provided by a solver option
file, which is read by the programs from standard input. The MiX99 solver option files
in the provided examples are named with the suffix . s1v. However, any name can
be given. An alternative approach is to give option on the command line. However,
command line options are more limited.

NOTE: When BOTH the solver option file AND the command line options are given, only
the command line options are used by default. With command line option -1 this can
be changed so that the solver option file is read AND the options from the command
line override the corresponding solver option file values.

4.6 Solver option lines

The mix99s solver option file consists of one or more option lines. These lines must
appear in the exact order specified below. Including all option lines is not mandatory.
However, if an option line is omitted, all successive lines must also be left out. In such
a case, the solver will use default values for the missing options. Comment lines are
allowed in the same manner as in CLIM: any text after the # character on a line is
ignored. Option values can be specified using either uppercase or lowercase letters.

RAM A line with at least one character,

# RAM demand:
H

which defines the use of random access memory. See previous chapter.
Additional options than can be given after the definition of RAM use:
NO/YES checking of release information (NO/YES), YES is default.

nt n Number of CPUs used in multi-threading is set to be n.

srm m Sparse regress matrix read to memory for matrix number m.

sp v Second-level preconditioner of value v.

noc No residual covariances used. Assumes none were given (mix99s
only).

IOP/IM/CHM/PAR in single-step method, product of A, ! times vector can
be performed using one of four altenative approaches. Approach
IOP uses iteration on pedigree, IM uses iteration in memory, but
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CHM uses CHOLMOD and PAR uses MKL PARDISO library. Use
of memory from lowest to most: 0P, IM, CHM/PAR, where memory
need by IOP and IM is quite close but CHM/PAR use much more
RAM. Computing time from highest to lowest: IOP, IM, CHM/PAR,
where there is substantial difference between all approaches. The
CHM and PAR options can use multi-threading.

MEL in single-step method, reads G~ or T matrix from file to memory.
The MEL option uses efficient matrix multiplication during PCG itera-
tion. The multiplication can use multi-threading by the multi-threaded
versions of MiX99 solvers. Note that when the number of genotyped
individuals is large the matrix to read is large and consumes a lot of
RAM memory.

MEM is like option MEL but slower and uses slightly less memory, when
T matrix is used. Same as MEL when G

MES does not read G! or T to memory, memory efficient but slow.

MEB b is like option MEL but makes the computations in blocks of size b
in ssGTBLUP. Can be faster than MEL for very large matrices.

MEA is like option MEB but the block size b is computed automatically
that leads to a block of 2 GB.

RDS instructs to use a small block size when calculating contributions
from regression design matrices. Keeps SNP marker matrix byte-
packed in memory. Currently implemented in mix99s only.

RDM similar to RDS but uses a medium block size. Currently in mix99s
only.

RDL similar to RDM but uses a large block size. Currently in mix99s
only.

RDX instructs to keep regression design matrices fully in (double precision
real) memory. Currently mix99s only.

RDB b similar to RDL but uses given block size abs(b) (absolute value
of b). If b is positive, keeps SNP marker matrices byte-packed in
memory. Currently mix99s only.

RDU m similar to RDB but instructs to use given amount of memory (m)
when calculating constributions of regression design matrices. Full
regression design matrices are kept in memory if possible or at
least byte-packed SNP matrices if possible. Block size is also cal-
culated from the given memory limit. Memory size m is given as
<amount><unit> where <amounts is an integer and optional <unit>
is one of K (kilo), M (mega), G (giga, default), T (tera), and P (peta-
bytes). Example: RDU 12G . Currently mix99s only.

w  value for the w multiplier of matrix A_ 1.

Defaults: h for high memory, YES for check release information, PAR for
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MKL PARDISO library, MEL for having G~! or T in memory, block size 1
for regression design matrices (except if all are SNP matrices: 1/5/10 for
Low/Medium/High memory options), and 1 for value of w. Option MEA is
default for the fully component-wise ssGTBLUP and ssSNPBLUP models
that use 1 byte marker matrix.

The following will change to use CHM, MEB, and 10 CPU threads:
H CHM MEB 1000 nt 10
One line with four entries:

# maxiter, tolerance, criterion (A/R/M/D), [enforce (F)]:
5000 5.0e-5 D F

The solver will consider the STOP option line only if an enforcing character
f is specified for the fourth entry. Otherwise, the line is ignored and default
values will be used.

The first entry is an integer number that specifies the maximum number
of iterations. Note that value larger than the number of equations (i.e.
the number of the effects) in the model is replaced automatically by this
largest allowed number of iterations. The second entry is a real value that
specifies the stopping value (i.e., tolerance) for the convergence criterion.
The third entry is a character that specifies the convergence criterion.
For example, if a character a is specified, then the iteration process will
continue until the convergence criterion Ca will reach a value smaller than
the stopping value specified in the second entry. The solver programs
provide five types of convergence criteria of which four can be chosen:

a Ca. Relative difference (residual) between right-hand and left-hand
side of the MME considering all equations of the additive genetic
effects only.

r Cr. Relative difference between right-hand and left-hand side of the
MME considering all equations.

m Cm. Relative difference between preconditioned right-hand and
left-hand sides of the MME considering all equations.

d Cd. Relative difference between solutions of the last two iteration
rounds. Note that if Cd is chosen as the convergence criterion, it
should be less than the stopping value in two consecutive iterations.

Default values: 5000 1.0e-5 d

In case of solving a threshold-model, a non-linear model will be solved
and the iteration process works on two different levels. Therefore, for a
threshold-model the STOP line must have five entries: an integer, a real
value, a character, an enforcing character f, and one additional integer.
Now the first integer value gives the maximum number of PCG-iterations
within each NR- or EM-round (default is 100 or number of equations in the
MME) and the last integer value gives the maximum number of NR- or
EM-rounds (default is 5000).

A line with one character specifying the calculation of residuals.
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# RESID: Calculate residuals? (Y/N)
N

y  Yes. Residuals will be written into the file(s) eHat .data (i). When
using mix99s, (i) will be zero (0). In case of MPI parallel processing,
each process writes an own eHat .data (i) file with the process
number (i) at the end of the filename. The order of the residuals
corresponds with the order of observations in the input data file.
The etat .data (1) files have as many columns with residuals as
the maximum number of traits in the largest trait group. This is
equal to the mxntra parameter shown in the Par1og file which is
produced by mix991. The residual columns are ordered in the same
sequence as the traits in the trait groups. For missing observations,
the corresponding value in the residual files are set to the missing
value -8192.0.

In case of MPI parallel processing, the order of the residual files cor-
respond to the order of observations in the input data file beginning
with file zero (0) up to number of processes minus one.

n  No. No residuals are written.

This option is only available in mix99p and will create the file(s)

ARsiwi.data (1), which contain information about the heterogene-

ity of variance in the residuals. These files are needed only when

accounting for heterogeneous variance.

>

Default value: n

A line with one entry,

# VALID: Model validation (N,P,S,Y,D,I,G,R)
N

which instructs the solver to calculate for each observation a correspond-
ing, here specified, sub-quantity of the applied model line, or to instruct
the solver to simulate observations based on the specified model, or to
deregress breeding values. By default, the calculated quantities for op-
tions (P, S, Y, D, I) are written to binary files after the iteration process has
ended. A text file is written when the option letter is appended with letter t,
e.g. pt. DYDs are always written to a text file. Missing value is -8192.0.
Alternatives are:

n  None. None of the options are requested.

p  Predictions. For each observation, the predicted value (y) is written
to the file(s) yHat .data (1).

s  Selected Model Factors’ Sum. For each observation the sum of
selected model factors is written to the file(s) sHat .data (i). The
selected factors must be specified on a following line.

y Yield Deviations (YD). For each observation the corresponding
YD will be written to the file(s) named YD .data (i). The factors
included into the YD must be specified on a following line.

i Individual Daughter Deviations (IDD). For each observation the cor-
responding IDD will be written into the file(s) named IDD.data (1).
The factors included into the IDD must be specified on a following
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line.

Daughter Yield Deviations (DYD). The solver will calculate for each
observation the corresponding IDD and will use it for the calculation
of DYDs based on the approach of Mrode and Swanson (2004). For
this option the calculated DYD will be written to a formatted filenamed
Soldyd. The factors included into the DYD must be specified on a
following line.

Generate Observations. This option is available in mix99s only.
The mix99s solver will not solve the model, but instead will generate
for each observation in the data a simulated observation (y). There-
fore, for all effects in the model true solutions will be simulated based
on the provided variance components. Fixed effect solutions will be
set to zero. The true solutions are written to the standard solution
files. The generated observations will be written into the file named
ySim.data0. This file can be used in a future MiX99 run to replace
real observation by simulated observations. See the VAR instruction
line in the Technical reference guide for MiX99 pre-processor for
reading and using of the generated observations instead of the real
observations.

When specifying g a SEED option line must be included after the
VAROPT option line. The SEED option line has one entry, which
must be one of those given in the SEED option description below
(see VAROPT).

Deregression (See Chapter 11.2).

The options v, i, d and g are not supported when solving non-linear
models.

The options s, y.i, or d will require adding of a second line, which specifies
which factors of the model are included into the calculation of the specified
quantity.

FACTOR One line with as many integers as there are factor (effect)

columns (missing included) defined in MODEL line. Inthe Mix99_-
DIR.DIR file, the number is the same as the first integer value
on the REGRESS instruction line (see Technical reference guide
for MiX99 pre-processor). The order of the integer values on the
FACTOR line corresponds to the order of the factors specified on the
MODET as well as on the REGRESS instruction line. Each integer
specifies whether or not the corresponding model factor is included
into the calculation of the desired quantity.

1 The factor will be included into the specified quantity
0  The factor will be excluded from the specified quantity

Specification of the factors for the desired quantities will be as
following:

Let’s assume a model, for which the solver will have the following
model terms available after the model has been solving:

y=Xb+Zp+ Za+e,
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where y contains the observations, b the estimates for the fixed effect
factors, p the estimates for the non-genetic animal effect factors,
a the estimates for the additive genetic animal factors and e the
residuals.

Selected Model Factors’ Sum. Any factor included in b, p, or @ can
be included into the sum. All factors included into the sum have to
be specified with ones (1); all factors excluded have to be set to zero

(0).

Yield Deviations (YD =y — Xb— Zp). All factors associated with
b and p have to be set to zero (0); all factors associated with a have
to be specified with ones (1).

Individual Daughter Deviations (IDD) and Daughter Yield De-
viations (DYD). The IDD is a quantity which is need also for the
calculation of the DYD. Thus, for both options the same quantity is
needed (IDD =y — Xb— Zp — 1/2a4.,)- All factors associated
with b and p have to be set to zero (0); all factors associated with a
have to be specified with ones (1).

A line with at least one entry that specifies different options related to
the estimation of variance components, the estimation of prediction error
variances by Monte Carlo, or the adjustment for heterogeneous variance.

# VAROPT: Variance options for VCE, PEV, HV (N,E,P1,P2,P3,S,C)
N

n  None. None of the options are requested.

e <f n> Estimation of Variance Components. The option e will instruct
mix99s to estimate variance components by a stochastic Monte
Carlo Expectation Maximization REML (MC EM REML) algorithm. A
special case is the ei option for estimation of variance components
of a MACE model (see Chapter 11.3.8).

An additional (optional) instruction can be given after the e (or ei)
character. This instruction has two entries; the character f and an
integer number n. The optional instructions are needed in case
certain variance component parameters are meant to be fixed.

When an e (or ei) is defined on the VAROPT option line, three
additional instruction lines have to be given:

STOPE The first line contains four entries of which the last one
is optional; two integers followed by one real value number
and one optional real value number. The first integer number
specifies the maximum number of MC EM REML rounds. If
the given number of REML rounds has a negative sign (e.g.
-60), previously run REML estimation is to be continued using
this new total number of rounds. The second integer number
specifies the number of data samples generated and analyzed
within a REML round. The real value number is the stopping
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criterion for the REML analysis. After the convergence indicator
reaches a value smaller than the specified stopping criterion,
the REML analysis will perform a sequence of final 30 MC EM
REML rounds, which will reduce the Monte Carlo error from the
parameter estimates. The second, optional real value is the
stopping value for solving the BLUP models of the data sam-
ples. This stopping value is applied for the same convergence
indicater as defined on the STOP option line. This optional
value allows to apply different BLUP stopping values for solving
BLUPs of the observed data and the sampled data. A less
strict stopping criterion for the sampled data may reduce com-
puting time. However, the stopping criterion value needs to be
specified with care, to ensure correct estimation of variance
components.

Default values: 1000 5 1.0e-9 <same as specified by STOP>

SEED The second line contains one entry, which defines the type of
the seed used by the random number generator for generating
the data samples.

d Default initialization by call to random_seed.

r The random number generator is initialized base on the
system clock.

g The user can specify the seeds for the random number
generator. If option g is specified j integers must be
provided in the next line.

Default value: d

MIXPATH The third line contains the path for the directory where
the mix991 pre-processor executable is located. In certain
intervals the mix99s solver will make a system call to mix991
to update the preconditioner matrices. Variance components
listed are no longer the starting values used, but the interme-
diate estimates that were applied for the most recent precon-
ditioner matrix update. If the given directory name is empty
(either a pair of quotation marks ("") or minus sign (-)) the
pre-processor is assumed to be located in a directory that is
included in the search PATH.

Start-up cycle for heterogeneous variance adjustment. After
mix99p has performed a maximum number of 20 iterations (speci-
fied on the STOP option line) it will write heterogeneity of variance
estimates to files named siwi.data (i). These files will be used
by mix99hv to create the input data files for the applied variance
model that describes the heterogeneity of variance in the data.

Cycle between models for solving the multiplicative mixed model.
The option is needed for the heterogeneous variance adjustment and
will instruct mix99p to discontinue in certain intervals the iteration
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process and make system calls for solving the variance model by
a second, simultaneous MiX99 analysis. The process will continue
until both models have converged.

ADJUST In case s or ¢ is defined on the VAROPT option line, an
additional line needs to be specified with as many integers as
there are factor columns (missing included) defined in MODEL
line. Inthe Mix99_DIR.DIR file, the number is the same as
the first integer value on the REGRESS instruction line (see
Technical reference guide for MiX99 pre-processor). The order
of the integer values on the ADJUST line corresponds to the
order of the factors specified on the REGRESS instruction line.
Each integer specifies whether or not the corresponding factor
of the model is included into the adjustment of heterogeneous
variance.

1 The factor will be included into the HV adjustment.
0  The factor will be excluded from the HV adjustment.

Including all factors corresponds to the method by Meuwissen
et al. (1996). When excluding some factors from the HV ad-
justment a restricted multiplicative mixed model will be applied.
Excluding the fixed effect factors from the example model given
in VALID will perform a restricted multiplicative mixed model
adjustment for heterogeneous variance of the form:

Y = ng +(Zp+ Z;a + e;) vy,

where ~; = - and J; is the heterogeneous variance adjustment
factor for stratum i.

STOPC In case c is defined on the VAROPT option line, a second
additional line with two entries must be given. The first entry is
an integer value giving the maximum number of heterogeneous
variance adjustment cycles; i.e. the maximal number that the
variance model will be updated and solved. The second entry is
a real value and is the required stopping criterion. The updating
and solving of the variance model will stop when the conver-
gence indicator for the heterogeneity adjustment factors has
reached a value smaller than the specified stopping criterion.
The convergence indicator for the heterogeneity adjustment
factors is calculated as:

((B) _ p(k=1\" (p(k) _ p(k=1)
( ) ( )
Ay (1)

where Cd,y,) is the value of the convergence indicator in adjust-
ment cycle k£ and [ is the vector of multiplicative adjustment
factors (lambda values).

Default values: 1000 1.0e-7

A line with one character:

Cdyy =
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# SOLTYP: Solution file options (Y,N,A,H,D)
Y

which specifies the way solutions are handled. Solving a standard linear
model expects y.

4.7 Files for model validation purposes

The solver programs can be instructed to provide information useful for model validation
purposes or information need for other type of analyses. The specified option on the
RESID and VALID option lines will instruct which of the following unformatted files are
created:

eHat .data (i) File(s) with residuals.

s) with a sum of selected model factors.

)

yHat .data (i) File(s) with predicted observations.
sHat .data (i) File(s)
)

(
(
(
YD.data (i) File(s) with yield deviations.

IDD.data (i) File(s) with individual daughter deviations.

The mix99s solver will create one file only with a zero character (0) added at the end
of the filename. The MPI parallel solver mix99p will create as many files as there are
processes specified for the parallel run. The files are numbered by (i), where (i) goes
from zero to number of processes minus one and the number is added at the end of
the filename.

The file(s) contain strictly as many rows as there are data rows in the input data file,
regardless whether some input data is missing or not used in an analysis. The order of
the rows is consistent with the order of the data rows in the input data file. Each row
consists of a fixed number of real values, which depends on the applied model. The
number of real values is the same on all rows and is equal to the number of traits in
the largest trait group. This number is equal to the mxntra parameter in the Parlog file
which is produced by mix99i. The real values in a particular row correspond to the
trait group that is specified on the corresponding data row in the input data file. The
order of the values within a row corresponds to the order of the traits within a trait group
as specified on the MODEL instruction lines. In case an observation is missing in the
data file or it is not used in the analysis, a missing value variable will be written for the
corresponding real value. This missing value variable is -8192.0. In case the MODEL
uses the SCALE option, all information will be transformed back to the original scale
before writing to the files.

All values on a row are stored as single precision real values and simple Fortran
programs can be written to transfer the files to text files. However, the MiX99 pack-
ages provides Mixtools programs, which allows simple analyses of the information
(means and SD by classification), or merging of the files with the input data file. See
MiXtoolmerge.f90 and MiXtoolms. 90 inthe MiXtools directory of the pack-
age. Alternatively, the files may be requested to be in text format by adding ’t’ after the
option name when requesting it.
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4.8 Solution files
The solver will write solution files depending on the model. Different types of solutions
are written to different files:

* Solani: Solutions for additive genetic effects. (So1_mn in case of an LS-model.)

* Solfix: Solutions for all across blocks fixed effects.

« Solfnn: Solutions for the n™ within block fixed effect. For instance, So1£02 is
the solution file for the second within block fixed effect.

« Solrnn: Solutions for the n" random effect in the model. For example, So1r03
is the solution file for the random effects with the random effect number 3.

* Solreg: Solutions for the regression effects of the first regression effect group
(applied across all observations).

* Solreg_mat: Solutions for the regression effects of REGMATRIX.

« So1DGVnn: Genomic breeding value solutions for the n'" REGMATRIX in the
model. For example, so1DGV02 has the genomic breeding values for the second
REGMATRIX command in the CLIM file.

* SolsnP: Solutions for all SNP marker effects. Available in component-wise
single-step models.

* Sol1PA: Solutions for parent averages of the additive genetic effects.

* So1Ms: Solutions for Mendelian sampling deviations of the additive genetic effects.

The structure of the text solution files depends on the model, but the general form of a
particular solution file is the same. However, the number of columns ina Solani file
depends on the number of traits. An explanation of the columns of the solution files is
given at the end of the printout of the solver program.

Below are descriptions of the two most common solution file formats. In general, the
Solani file has the following columns:

1) individual ID code

2) number of offspring

3) number of observations
4) solution for trait 1

5) solution for trait 2

6) ...

In this manual, column titles are shown for solani, although they are not present in
the file. When there are random regression effects, solutions are in the numbering order
of the random regression effects. The numbering order is explained in Chapter 7.3.

The solPa and soluMs files share the same format as the solani file. However,
instead of containing solutions for the additive genetic effects, they have parent averages
and Mendelian sampling deviations derived from those solutions.

In general, the so1f1ix file has the following columns :
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1) factor number

2) trait number

3) level code

4) number of observations

5) solution

6) name of factor (integer number column)
7) name of trait.

The solfnn file has the solutions for the within-block fixed effect number nn. The file
has the following columns :

1) level code

2) number of observations
3) solution for trait 1

4) solution for trait 2

5) .

The solrnn file has the solutions for random effect nn. The file has the following
columns :

1) level code

2) number of observations
3) solution for trait 1

4) solution for trait 2

5

The solreg file has the solutions for regression effects. The file has the following
columns :

~— ~— — ~—

1) trait number
) regression number within trait
3) solution
4) trait name
) covariable name

The solreg_mat file has the solutions for regression effects defined by the REGMATRI X
commands. The file has the following columns :

1) trait number

2) REGMATRIX number within trait
3) effect number within REGMATRIX
4) solution

5) REGMATRIX name

The so1DGVnn file has the genomic breeding value solutions for REGMATRIX number
nn. The file has the following columns :

~— — — ~—

1) individual ID code number
2) number of observations
3) solution for trait 1
4) solution for trait 2
5) .
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The so1snP file has the following columns:

1) SNP marker number
2) solution for trait 1

3) solution for trait 2

4) ...

4.9 Using old solutions for the solver

Solutions from a previous run can be reused as initial values by the solver. The solver
automatically writes all solutions in binary format to a file named sol1vec. When the
solver is restarted in a directory containing a solvec file, it uses the solutions in that
file as initial values for the iterative process. When new data is added or variance
components are updated to an evaluation, where the model effects in the mixed model
equations remain the same, it may still be possible to use the solutions in the existing
Solvec as initial values. To achieve this, the preprocessor must be invoked using the
--keepsol option. Without this option, the solvec file will be ignored and deleted.
The solvec file approach for initial values is commonly used when additional iterations
are needed to achieve convergence.

A more general approach is to create a solunf file, especially when new data intro-
duces new effect classes (e.g., new years or individuals). This file is generated when
the MODEL command has the the RESTARTSOL option. To use the solunft file as
a source of initial values, it must be renamed to be so1o1d for the preprocessor to
recognize it. Unlike the solvec file, the Solunf file has information to accommodate
increase in the number of levels in the model effects. For example, new data may have
new individuals with new levels of fixed effects.

5 Describing model

5.1 Naming of model components

The data file is expected to have two types of values: integer and real number columns.
Column names are specified by the TNTEGER and REATL commands. The names
can contain any alphanumeric characters, i.e., letters and numbers. Many other
characters such as the underscore (_) are also allowed. However, there are some
reserved characters that are not allowed in names: =, (,), @, |, !, <, & and #. These
characters have special meanings. For example, # starts a comment, and & marks a
line continuation. Others are model component separators, and will be discussed later
in this manual.

A statistical model is used to describe observations. Statistical model has effects. Data
column names can be used as effect names in the model. If a data column name is
an integer number column name, then it is assumed to be an effect with classes or
factors. If a data column name is a real number column name, then it is assumed to be
a regression effect. CLIM expects all effect names on a model line to be unique such
that an effect name can appear only once on a model line. When many model effects
refer to the same data column, component names can be used. See the repeatability
model example (Chapters 6.2 and 6.2.1). Length of names have been restricted to 80
characters.

CLIM models have a predefined structure. In general, the model can have four types of
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effects, and the effects have to be given on a model line by this order. The the order
and types of effects are:

* Fixed regression effects

+ Fixed classification effects

» Random effects other than additive genetics
« Random additive genetic effects

We will clarify these effect types in this manual elsewhere. In the following examples of
this Chapter, we will consider models having fixed effects only. However, note that the
distinction of a random effect to be an additive genetic effect depends on the covariance
structure used, not so much on the effect being an additive genetic effect. In MiX99 ,
an additive genetic effect is associated with a pedigree-based relationship matrix giving
a pedigree BLUP or a single-step GBLUP.

5.2 Model basics by linear model examples
We illustrate some key consepts of giving a model using linear models without random
effects other than the residual. We use data in file named 1.5 . dat:

onesy yearl, year2; X1 X25 Y3 Y24
1 1999 2001 -1.0 1.00 14 1
1 1999 2002 -0.8 0.64 12 12
1 1999 2001 -0.6 0.36 10 3
1 1999 2002 -0.4 0.16 i5
1 1999 2001 -0.2 0.04 9 7
1 1999 2002 0.0 0.00 10 9
1 2000 2001 0.2 0.04 21 11
1 2000 2002 0.4 0.16 23 23
1 2000 2001 0.6 0.36 26 15
1 2000 2002 0.¢ 0.64 30 27
1 2000 2001 1.0 1.00 34 19

where columns yearl and year2 are observation years, columns y and y2 have
observations of two traits. Columns x and x2 are linear and quadratic functions,
respectively, used as covariates. The first column ones can be used to include the
general mean to a model.

This data file can be described to CLIM using commands:

DATAFILE ls.dat

INTEGER ones yearl year?2
REAL X X2 y y2
MISSING =99

Note the need to use the MISSTNG command to define missing REAL column variable
to be —99 because a valid covariate of an observation has value zero. Default value for
missing is zero.

5.2.1 Example: single trait regression with nesting
Consider a single trait model

y:year1+x*sl+x2*sq+e

where
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* yeari is year effect

* X is linear regression covariate

* s, is unknown linear regression

* s, Is unknown quadratic regression
* e is the random residual.

The model terms cannot be given in the order presented because MiX99 expects
that regression terms precede class effects. Thus, the model needs to be given as
y = X x2 yearl.

DATAFILE ls.dat
INTEGER ones yearl year?2

REAL X X2y y2
MISSING -99

MODEL
y = X x2 yearl

Assuming both regressions are also nested within year, the CLIM code is

DATAFILE ls.dat

INTEGER ones yearl year?2
REAL X X2y y2
MISSING -99

MODEL
y = X x2 yearl curve(x x2| yearl)

The term curve is not a reserved keyword but can be chosen to describe the nested
components in the model. Naming certain model components can be a convenient
way to organize and clarify model effects. For example, in this model we can group
the non-nested regression effects under a common name to improve readability. In
addition, the year1 effect can be included in the nesting component:

y = regression(x x2) curve(l x x2| yearl)

The estimates of this and the previous model line will be the same but the latter model
line may be easier to read.

For this model with nested regression, three solution files are generated:
* Solreg has estimates for the linear and quadratic terms.
* Solfix has estimates for the nested regression terms, except the last one.
* Sol1f01 has estimates of the last nested regression term.

The reason for splitting the nested regression estimates into two files is that MiX99
assigns a special status to the last effect. The last effect is treated as a within block
effect, when WITHINBLOCKORDER command is not used to give other instructions. In
a fixed effect model, all nested effects are uncorrelated leading to the last effect being a
separate effect.
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The solregfileis

Trt Reg-No Solution Trait Covariable
1 1 3.3527 y  x
1 2 5.2455 y X2

The solfix file having the curve (1 x| yearl) model partis

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1999 6 9.8929 yearl y
2 1 1999 6 4.2723 X (yearl) y
1 1 2000 5 19.400 yearl y
2 1 2000 5 2.4330 X (yearl) y

The so1£01 file having curve (x2 | yearl) model part is

1999 6 6.8080
2000 5 3.6830

5.2.2 Example: two-trait regression with nesting

Consider extending the previous Chapter model to include a second trait to get a
two-trait model. Assume that residuals of the two traits are uncorrelated. In this model,
both traits share the same covariate values. Furthermore, assume that year1 is the
nesting variable for the curves of both traits. By default, each trait gets its own set of
solution for all model effects.

CLIM code for a two-trait model is

DATAFILE ls.dat

INTEGER ones yearl year?2
REAL X X2 Yy y2
MISSING -99

MODEL
y = regression(x x2) curve(l x x2| yearl)
y2 = regression(x x2) curve(l x x2| yearl)

This model gives again three solution files.

The solregfileis

Trt Reg—-No Solution Trait Covariable
1 1 6.5937 y X
1 2 5.2455 y X2
2 1 12.809 y2 X
2 2 =7.9241 y2 x2

The solfixfile havingthe curve (1 x| yearl) and curve (1 x| yearl) model
parts is

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1999 6 9.8929 yearl y
1 2 1999 6 16.250 yearl y2
2 1 1999 6 1.0312 X (yearl) y
2 2 1999 6 3.6376 X (yearl) y2
1 1 2000 5 19.400 yearl y
1 2 2000 5 3.0000 yearl y2
2 1 2000 5 -0.80804 X (yearl) y
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2 2 2000 5  40.048 x (yearl) y2
The so1£01 file having curve (x2 |yearl) and curve (x2 |yearl) model parts is

1999 6 6.8080 11.942
2000 5 3.6830 =27.790

The first trait solutions are in column 3 and the second trait solutions are in column 4.

5.2.3 Example: different model effects by trait
We make the following two changes to the model of the previous Chapter:

» Assume a 50% residual correlation between the traits.
» Add a second nested regression for the second trait, nested by year?2.

The first change requires defining a residual variance structure using the PARFILE
command. In this case, we assume a residual variance of 1 and a correation of 0.5. The
second change requires adding an additional nested regression term for the second
trait. Because the first trait does not have this regression, it must be explictly defined as
missing for that trait.

CLIM code becomes

DATAFILE ls.dat

INTEGER ones yearl year?2
REAL X X2y y2
MISSING -99

PARFILE CLIM

1 LOWER
1
.51
MODEL
y = regression(x x2) curvel (1l x x2| yearl) curve2 (- - -)
y2 = regression(x x2) curvel(l x x2| yearl) curve2(l x x2| year2)

This model gives again three solution files.

The solreg file is

Trt Reg-No Solution Trait Covariable
1 1 5.9545 % X
1 2 15.003 % X2
2 1 4.1136 y2 X
2 2 8.1043 y2 X2

The solfix file has the curvel (1 x x2| yearl), curvel (1 x x2| yearl),
and curve2 (1 x| year2) model part solutions:

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1999 6 9.8929 yearl y
1 2 1999 6 11.328 yearl y2
2 1 1999 6 1.6705 X (yearl) y
2 2 1999 6 6.2784 x (yearl) y2
3 1 1999 6 —-2.9490 x2 (yearl) vy
3 2 1999 6 —-5.2005 X2 (yearl) y2
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1 1 2000 5 19.400 yearl y

1 2 2000 5 11.319 yvearl y2
2 1 2000 5 -0.16883 X (yearl) y

2 2 2000 5 5.1949 X (yearl) y2
3 1 2000 5 -6.0740 x2 (yearl) y

3 2 2000 5 =-9.1532 x2 (yearl) y2
4 2 2001 6 -—-2.4818 year2 y2
5 2 2001 6 1.1802 X (year2) y2
4 2 2002 5 7.8259 year2 y2
5 2 2002 5 1.0596 X (year2) y2

The so1£01 file has the curve2 (x2 | year2) model part solutions:

2001 6 0.81246
2002 5 0.58657E-01

6 Single trait mixed effect models

Single trait mixed models have only one model line and one residual variance. However,
there are exceptions to these rules through the use of trait groups and heterogeneous
residual variances. In the following we will present different kinds of mixed effect models
where the additive genetic effects have a pedigree-based relationship matrix. Many of
the same principles apply to multiple trait models (Chapter 7) and genomic data models
(Chapter 9).

6.1 Pedigree BLUP

Consider a simple individual animal model

traitl = herd x year + a + e

where
* herd x year is fixed the herd times year interaction effect
* ais the random additive genetic effect
* e is the random residual.

CLIM does not support multiplication operations between class effects or covariates in
the model line. For example, the herd x year interaction has to be coded in an integer
column of the data file as a class effect. Below this interaction is in column herdXyear.
However, class effect interactions allow within class effect regressions such as random
regression models.

Complete CLIM instruction file is (named amodel . c1m)

DATAFILE example.dat
INTEGER IDcode sire herdXyear ones
REAL traitl trait2

PEDFILE my . ped
PEDIGREE IDcode am

DATASORT PEDIGREECODE=IDcode

PARFILE ST.var
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MODEL
traitl = herdXyear IDcode

The data file example.dat and the pedigree file my.ped are the same as given
earlier (Chapters 3.1.1 and 3.3.1). The variance components file (ST .var) is for the
first trait (trait1):

Random effect;y Row, Columns Variance

1 1 1
2 1 1

In order to solve the model, two steps are needed. First, the preprocessor is executed:
mix99i amodel.clm. Second, the solver is executed: mix99s -s. The solver will
produce solution files So1f1ix having fixed effects, and solani having the breeding
values. The solfix fileis

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 2 99.538 herdXyear traitl
1 1 2 3 122.69 herdXyear traitl

The solani file is (column names have been added)

IDcode N-Desc N-Obs Solution

1 0 0.18516E-13
0 0.18516E-13
0 0.92308
1 -0.92308
0 0.42454E-13
1 1.8462
0 0.65421
1 0.64447E-01
1 2.0506
1 -0.17840

O W 00 J o U b W
O R P W wbdDdDNDDNDDN

[
o

Solutions may be slightly different due to computing precision when the example is
tested on another computer. For example, the solutions close to zero are likely to be
different (breeding values for individuals 1, 2, and 5).

6.1.1 Example: Unknown parent groups in a pedigree

Unknown parent groups (Chapter 3.3.2) are as easy to give in CLIM. The groups can be
given as coded unknown parents in the pedigree file where a group is indicated by giving
negative number as a parent code instead of zero for an unknown parent. Unknown
parent groups are used, when the PEDIGREE command has '+p’. For example, the
previous CLIM instruction file needs only one change:

PEDIGREE IDcode am+p

in order to have fixed UPGs. Note that no space is allowed between the characters in
am+p.

Unknown parent groups are defined to be random by including a genetic (co)variance
matrix multiplier after am+p. For example,

PEDIGREE IDcode amt+p 0.5
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The multiplier, here 0.5, is in the inverse scale. Thus, the (co)variance matrix for the
random UPGs is now 2.0 times the additive genetic (co)variance matrix.

Notes:

« if the pedigree has negative parent numbers, and the model instruction file does
not have ’+p’ then all negative parent numbers are considered to indicate an
unknown parent and are effectively the same as zero.

« if '+p’ is given but parent number of an individual is zero (0) (instead of a negative
number), this parent assigned to group code -99999999.

6.1.2 Example: Inbreeding and the pedigree relationship matrix

The pedigree-based additive relationship matrix does not account for non-zero inbreed-
ing coefficients by default. However, it is possible to use pre-calculated inbreeding
coefficients in the additive relationship matrix. Because the processor does not calcu-
late inbreeding coefficients, a separate program such as RelaX2 (Strandén and Vuori,
2006) has to be used.

Consider the example in Chapter 6.1 but now account the inbreeding coefficients in the
relationship matrix computations. Inbreeding coefficients calculated using RelaX2 are
(file my . inbr):

.00000
.00000
.00000
.00000
.25000
.25000
.37500
.37500
.37500
.50000

O W 0 J o Ul b WN
O W O J o U b WN
O O O O O O o o o

[y
=
(@)

In this file, the first column has the ID codes, the second has renumbered ID codes,
and the last column has the inbreeding coefficients. In order for CLIM to use this file,
two additional lines are needed:

INBRFILE my.inbr
INBREEDING PEDIGREECODE=1 FINBR=3

According to the TNBRFILE command, the inbreeding coefficients are in the my . inbr
file. The INBREEDING command specifies that the ID codes are in the first column
(PEDIGREECODE=1), and the inbreeding coefficients are in the third column (F INBR=3)
of the INBRFILE my.inbr.

The use of inbreeding coefficients in the relationship matrix changes the solutions
slightly. Fixed effect solutions in the So1fix file are

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 2 99.538 herdXyear traitl
1 1 2 3 122.61 locationXyear traitl

Breeding value estimates in the solani file are

IDcode N-Desc N-Obs Solution
1 2 0 -0.79627E-16
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0 -0.79627E-16
0 0.92308
1 -0.92308
0 0.11618E-13
1 1.8462
0 0.70457
1 0.24590
1 1.8188
1 0.11106

O W 00 J o) U b W
O O P W whDNdDN

=

6.1.3 Example: Weighting residuals in a model

Weight can be used to indicate that an observation is either a mean from many records
or that observations have varying accuracy. A weight of an observation divides the
common residual variance for that observation. Thus, weights can be used to achive
heterogeneous residual variances.

In the data file, weight is a real number. In CLIM, the WEIGHT option in the model line
specifies the weight used for a trait. Model options for a trait follow the ”!” sign. For
example, when the data file column ‘'weight’ contains weights, the option to use them
foratraitis”! WEIGHT=weight” at the end of the model line.

Consider the previous example (Chapter 6.1.2) again but with weights. However, first
a least squares model was used to correct for the environment and weights were
computed. The new data file (example_w.dat)is:

ID code; sireo herdxyears ones, trait1; trait2,  ycs weight,

4 1 1 1 90 200 —-10.0 1.00
6 3 1 1 110 190 —10.0 1.00
8 5 2 1 120 140 -3.3 0.95
9 5 2 1 130 120 6.7 0.9
10 7 2 1 120 130 -3.3 0.95

where columns yc and weight have the corrected observations and weights, respec-
tively. Because precorrected observations are used, the only fixed effect is the general
mean as defined by column ones.

The CLIM code is

DATAFILE example_w.dat

INTEGER IDcode sire herdXyear ones
REAL traitl trait2 yc weight
MISSING =99¢

PEDFILE my . ped

PEDIGREE IDcode am

INBRFILE my .1inbr
INBREEDING PEDIGREECODE=1 FINBR=3

PARFILE ST.var

MODEL
yc = ones IDcode ! WEIGHT=weight

In a single trait model, the use of weights is equivalent to using observation specific
residual variance which is computed as the residual variance divided by the weight.
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Fixed effect solutions (So1fix) are

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 5 -0.58673 ones ycC

Breeding value estimates in the solani file are

.63451E-16
.63451E-16
.91096
.91096
.25403E-01
1.8473
0.69541
0.24391
1.7555
0.11040

O O O O O

O W O JdJo U b W N
O O P W whNhDNDN

0
0
0
1
O —
1
0
1
1
1

=

6.2 Repeatability model

Repeatability model has usually two effects with the same incidence matrix but different
covariance structures. In each observation of an individual, the permanent environment
describes the non-genetic part, and the additive genetic effect has the heritable part.
Thus, in the model line, the same integer number column in the data file is referred to by
two different effects: permanent environment and direct genetics. However, because the
same name cannot appear twice on the model line, component names must be used.
Component names are user defined (renamed) names of one or more components
in the model line. Basically, any classification effect can be renamed. For example,
there is a column IDcode but we want to rename this effect to be individual. This
is achieved by giving individual (IDcode) on the model line.

Consider a repeatability model
y = herd X year +p+a-+e

where herd x year is fixed herd times year interaction effect, p is random permanent
environment effect, a is the additive genetic effect, and e is the random residual. Both p
and a have the same design matrix relating observations to individuals. However, they
have different covariance structures. The usual repeatability model assumptions are

E(p) = 0 Var(p) = Io}
E(a) = 0 Var(a) = Ad?
E(e) = 0 Var(e) = Io?

where o is the permanent environment variance, o is the additive genetic variance,
and o2 is the residual variance.

The model has two random effects which refer to the same class name, named IDcode,
that is present in the data file. The following model statement is unacceptable (note
that only commands relevant to the model line are given):

INTEGER IDcode sire herdXyear ones
REAL traitl?2

PEDIGREE IDcode am
MODEL
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traitl2 = herdXyear IDcode IDcode
because IDcode appears twice as an effect.

An alternative would be to have two identical columns with ID code numbers in both of
them. Thus, our model line would be

INTEGER IDcode pe_IDcode sire herdXyear ones
REAL traitl2

PEDIGREE IDcode am # IDcode is for additive genetic
RANDOM pe_IDcode # for permanent environment

MODEL
traitl2 = herdXyear pe_IDcode IDcode

This model is acceptable. However, now the data file is larger, and it is necessary to
have two columns having the same content. Instead, a component name can be used
to name the model effects.

The preferred way is to use component names when referring to the same integer
column name. In the following, the name 'G’ is given to the additive genetic effect, and
'PE’ for the permanent environment. These names try to be descriptive and are not
reserved names in CLIM. Alternatives are (only the relevant command lines are given):
1:

PEDIGREE G am # G for additive genetics

RANDOM PE # PE for permanent environment
MODEL
traitl2 = herdXyear PE (IDcode) G (IDcode)
2:
PEDIGREE IDcode am # ID code for individual additive genetics
RANDOM PE # PE for permanent environment
MODEL
traitl2 = herdXyear PE(IDcode) IDcode
3:
PEDIGREE G am # G for additive genetics
RANDOM IDcode # permanent environment
MODEL

traitl2 = herdXyear IDcode G(IDcode)

Note that the effect name in the PEDIGREE command is always an additive genetic
random effect and need not be present in the RANDOM command. Furthermore, it is
assumed that the random effect number in the PARFTLE for an additive genetic effect
is one less than for the residual. These alternatives will produce the same instructions
formix991. Chapter 6.4 will show that component names can be given to fixed effects
as well.

6.2.1 Example: Repeatability model in detail
Let’s use the two-trait data presented for a two-trait model (Chapter 3.1.1) and modify it
for a single trait repeatability model. The model is

trio = herd X year + p+a—+e
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where herd x year is the fixed herd-year effect, p is the random permanent environment
effect, a is the random additive genetic effect, and e is the random residual.

Variance components are: permanent environment o> = 2.0, genetic o7 = 3.0, and
residual o2 = 5.0. The parameter file RM.var is

Random effect; Row, Columns Covariance; Comment

1 1 1 permanent environment
2 1 1 additive genetic
3 1 1 residual variance

The data file having two traits is modified for the repeatability model. The observations
of both traits are giving its own record line and the same column for herdxyear and
observation contains data from both of the traits. The new data file:

ID code; sires herdxyears ones, trait12;

4 1 11 1 90
4 1 21 1 200
6 3 11 1 110
6 3 21 1 190
8 5 12 1 120
8 5 22 1 140
9 5 12 1 130
9 5 22 1 120
10 7 12 1 120
10 7 22 1 130

DATAFILE example_repeat.dat
INTEGER IDcode sire herdXyear ones
REAL traitl2

DATASORT PEDIGREECODE=IDcode

PEDFILE my . ped

PEDIGREE G am # G for additive genetics
RANDOM PE # PE for permanent environment

PARFILE rep.var

MODEL
traitl2 = herdXyear PE (IDcode) G (IDcode)

The fixed effect solutions in the so1 fix file are

Fact. Trt Level N-Obs Solution Factor Trait
1 1 11 2 99.833 herdXyea traitl?2
1 1 12 3 123.01 herdXyea traitl2
1 1 21 2 194.83 herdXyea traitl2
1 1 22 3 129.68 herdXyea traitl2

Permanent environment solutions in the so1r01 file are

IDcode N-Obs Solution
4 2 -.88889
6 2 0.88889
8 2 1.1867
9 2 —-.55846
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10 2 —.62828
The breeding values estimates in the solani file are

IDcode N-Desc N-Obs Solution
-.58526E-06
—.58526E-06
0.33333
-.33333
.81159E-06
.66667
.97735E-01
.98778
.85516E-01
.71556E-01
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6.3 Sire model

In a sire model, records are associated with the sire of the individual having a record. In
a typical sire model, sire has all its daughter’s observations. Consequently, observation
has only half of the genes to which the observation has been associated. Furthermore,
the pedigree based relationship has often only sires.

In the following, we use the data introduced for animal model (Chapter 6.1) to illustrate
a sire model.

6.3.1 Example: Simple sire model
Consider a simple sire model:

traitl = herd X year + s + e

where herd x year is the fixed herd-year effect, s is the random sire effect, and e is the
random residual.

The data file is example.dat, the same as used in Chapter 3.1.1. In this sire model,
all sires are assumed to be unrelated. Thus, the pedigree file (SM.ped) is

individual; sireo maternal grand sires
1 0 0

3 0 0
5 0 0
7 0 0

The variance components file needs to be changed. Sire genetics make up only a
quarter of the total additive genetic variance. Thus, the variance components file
(SM.var)is

Random effect; Row, Columns Variance

1 1 1
2 1 1

The CLIM code for the sire model is

DATAFILE example.dat

INTEGER IDcode sire herdXyear ones
REAL traitl trait2
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PEDFILE SM.ped
PEDIGREE G sm

PARFILE SM.var

MODEL
traitl = herdXyear G(sire)

The fixed effect solutions (So1fix) are

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 2 100.00 herdXyea traitl
1 1 2 3 123.25 herdXyea traitl

The breeding values estimates (Solani) are

Bull N-Desc N-Obs Solution

1 0 1 -.75000
3 0 1 0.75000
5 0 2 0.24390
7 0 1 -.24390

6.3.2 Example: Maternal grand sire model

The previous simple sire model example can also be analyzed by a sire model where
a sire maternal grand sire relationship matrix is used. This allows taking into account
relationships between sires. The command file does not change, but the pedigree file is
different.

The pedigree file (smgms . ped) is

individual; sire, maternal grand sires;
1 0 0

3 1 0
5 3 1
7 5 3

As before, the solver will produce the so1 f1ix file having the fixed effect solutions

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 2 99.976 herdXyea traitl
1 1 2 3 123.19 herdXyea traitl

The solani file has breeding values for the sires is

Bull N-Desc N-Obs Solution

1 2 1 -.35736
3 2 1 0.40621
5 1 2 0.20334
7 0 1 0.24076E-01

6.4 Fixed and random regressions with nesting

Fixed and random regression models can have regression effects nested within levels
of a class variable. Typical random regression model in dairy cattle is test-day model
where the lactation curve is fitted for test-day observations. Test-day models often have
fixed regression curves nested within a class variable such as lactation number.

The class variable is an integer number column name in the data file. Nested regression
models usually use component names (Chapter 5.1) in order to nest several regression
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covariables within the same class variable. In the following, we extend the use of
the component name as a class effect. Earlier we renamed a class effect such as
the additive genetic effect G (IDcode). The same notation will be used for nested
regression effects. When the model has different kinds of regression effects, the order
of the effects on the model line becomes important. We will cover this at the end of the
next Chapter.

6.4.1 Nested regression effects

A regression effect can be nested within a class variable. This is similar to the compo-
nent name concept introduced for the repeatability model. However, we can go even
further and combine several effects into a component with the same nesting class
variable. For example, assume a fixed cubic polynomial curve nested within a season.
The model could be

y = fixed curve(l linear quadratic cubic | season) IDcode

where season and IDcode are integer number column names in the data file, and
linear, quadratic, and cubic are real number column names in the data file.
The number 1 above means intercept term, i.e., season effect, in this example. The
'fixed_curve’is a component name with the common nesting class season applied
to all its regression effects. Here fixed_curve defines a fixed regression effect.
However, when the component name appears in the RANDOM command, then a random
regression effect is assumed instead.

In an alternative equivalent model, the intercept in the fixed_curve has been moved
to be a separate class effect. Therefore, the model line can also be written as:

y = season fixed_curve(linear quadratic cubic | season) IDcode

This moving of the season effect to a separate effect works for fixed effects. However,
for random effects, this may not be feasible because component names are used to
distinguish correlated random regression effects. See the examples below for random
regression models.

Consider a more general model with a non-genetic random effect (PE) and an additive
genetic effect (G). A regression without nesting can be given:

y = linear quadratic cubic season PE (IDcode) G (IDcode)
This and the previous models has some important things to consider:
Model structure: The model has four types of effects:

 Fixed regression effects: 1inear, quadratic, cubic

+ Fixed classification effects: (season), fixed_curve(1 linear quadratic cubic |
season)

« Random effects: PE
» Random additive genetic effect: G

The order of effects on the model lines must follow these types. Within each type,
the order of effects is free.

Genetic effects: The additive genetic (here G) is linked to the pedigree by the PEDIGREE
command, and must always be the last effect on the model line.
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Following these rules, fixed effects with regression and nested regression can be given:

y = linear quadratic cubic &
season fixed_curve (linear quadratic cubic | season) &
PE (IDcode) &
G (IDcode)

Note the four types of effects following each other as blocks in correct order.

6.4.2 Example: Random regression test-day model

We consider a single trait random regression model presented in Schaeffer and Dekkers
(1994). This model is known also as random regression test-day model, where several
observations are modeled throughout lactation using a linear regression function.

Cows have repeated observations of milk production. The data file includes milk yield
and the time since calving, also known as days in milk (DIM). The model is

milk = DIM - by + log(305/DIM) - by + HTD + f(a, DIM) + ¢

where
milk is milk yield observation,
DIM is the days in milk linear regression covariable,
by is fixed regression effect of DIM,
log(305/DIM) is the logarithm of DIM regression covariable,
by is fixed regression effect of the logarithm of DIM,
HTD is the fixed herd test-day effect,
f(a, DIM) is the random additive genetic regression function, and
e is the random residual.

The random regression function f for individual i has form
f(a, D]M) = Q; + DIM - ;2 + lOg(305/D]M) ca;3

Thus, for each individual, three random regression coefficients are estimated which can
be used to estimate breeding values.

Variance components are: residual variance o2 = 100, and random regression effect

covariance matrix
44791 —0.133  0.351

Go=| —0.133 0.073 —-0.010
0.351 —0.010  1.068

The parameter file RRM. var is

Random effect;y Row, Columns Covariance; Comment
1

1 additive genetic: intercept
intercept, DIM linear
intercept, In(DIM/305)
DIM, DIM

DIM, In(DIM/305)
In(DIM/305), In(DIM/305)
residual variance

S N =
Pow NN W N R
R W W N R e
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The parameter file can be given in the MIXED format as

1 LOWER
44.791
-0.1333 0.073
0.351 -0.010 1.068
2 LOWER
100.0

The pedigree and data files for the random regression model example:

pedigree file RRM. ped data file RRM. dat
individual; sireo damgs blocks | HTD4 individualo, blocks DIM; In(305/DIM), milks
1 9 7 1 1 1 1 73.0 1.4298500 26.0
2 10 8 1 2 1 1 123.0 0.9081270 23.0
3 9 2 2 3 1 1 178.0 0.5385280 21.0
4 10 8 3 1 2 1 34.0 2.1939499 29.0
5 11 7 3 2 2 1 84.0 1.2894900 18.0
6 11 1 4 3 2 1 139.0 0.7858380 8.0
7 0 0 8 4 2 1 184.0 0.5053760 1.0
8 0 0 8 1 3 2 8.0 3.6408701 37.0
9 0 0 8 2 3 2 58.0 1.6598700 25.0
10 0 0 8 3 3 2 113.0 0.9929240 19.0
11 0 0 8 4 3 2 158.0 0.6577170 15.0
5 3 2 218.0 0.3358170 11.0
6 3 2 268.0 0.1293250 7.0
2 4 3 5.0 4.1108699 44.0
3 4 3 60.0 1.6259700 29.0
4 4 3 105.0 1.0663500 22.0
5 4 3 165.0 0.6143660 14.0
6 4 3 215.0 0.3496740 8.0
4 5 3 14.0 3.0812500 35.0
5 5 3 74.0 1.4162500 23.0
6 5 3 124.0 0.9000300 17.0
5 6 4 31.0 2.2863200 28.0
6 6 4 81.0 1.3258600 22.0
The CLIM code for the random regression model is
DATAFILE RRM.dat
INTEGER  HTD IDcode block
REAL DIM 1n305DIM & # Covariables
milk # Milk yield observation

PEDFILE RRM. ped
PEDIGREE G am

PARFILE RRM.var

MODEL
milk = Lact_curve (DIM 1n305DIM) HTD G(1 DIM 1n305DIM| IDcode)

The component name G’ is used for the last effect on the model line with a pedigree
structure. Thus, it has the additive genetic random regression effects. Note that the
component name Lact_curve is informative for the user only, because it is used for
fixed regression effects and there is no nesting. The name Lact_curve will remind
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the user that these regression effects model the fixed lactation curve.

The fixed effect solutions (So1fix) are

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 3 19.950 HTD milk
1 1 2 4 20.373 HTD milk
1 1 3 4 20.610 HTD milk
1 1 4 4 19.728 HTD milk
1 1 5 4 18.605 HTD milk
1 1 6 4 17.852 HTD milk

The Lact_curve regression effect solutions (solreqg) are

Trt Reg-No Solution Trait Covariable
1 1 -.49839E-01 milk DIM
1 2 5.2910 milk 1n305DIM

The random regression effect estimates (so1ani) for each individual are

ID code N-Desc N-Obs Intercept DIM 1n305DIM
1 1 3 —.44256 0.36869E-01 -.36961E-01
2 1 4 0.26977 -.66036E-01 0.32266E-01
3 0 6 —.72875 0.68317E-02 -.47899E-01
4 0 5 1.1019 -.53652E-02 0.76755E-01
5 0 3 -.16240 0.69360E-02 -.14924E-01
6 0 2 —-.48256 0.16641E-01 -.37788E-01
7 2 0 —-.98533E-01 0.13337E-01 -.10336E-01
8 2 0 0.45724 —.23800E-01 0.36344E-01
9 2 0 —.62847 0.35030E-01 -.47914E-01
10 2 0 0.45724 —.23800E-01 0.36344E-01
11 2 0 -.18720 -.76675E-03 —-.14550E-01

6.4.3 Covariable table in a regression model

Regression models in dairy cattle breeding evaluations are typically so called test-day
models, where repeated observations of a cow are modeled throughout lactation. The
regression covariables are functions of days in milk (DIM) which take only specific
values, such as integers from 1 to 350. An index in the data file can be used to indicate
a row in the covariable table file, and its columns are specified in the model line. The
use of a covariable file helps to reduce the size of the data file, as covariable files are
often small due to the limited number of possible values for the index, like DIM. For
example, if the data file contains DIM values ranging from 1 to 350 days, the covariable
table file will have values in only 350 rows.

Assume the same fixed effect regression curve as given above. A covariable table
file can be specified by the command TABLEFILE. The data file must include an
integer index column, such as DIM. In our example, the file will have five columns:
DIM, intercept (constant ones), linear (equals to DIM), quadratic (DIM?), and cubic

(DIM?®). The covariable table values are referenced by the letter t and a column
number: tn. The model line can now be written as:
y = fixed_curve ( | season) IDcode

where t1, t2, t3, t4 refer to columns two, three, four, and five, respectively, in the
covariable table file. Column one in the covariable table file contains the table index and
is not considered an accessible column by the model. The input column in the data file
is indicated by the command TABLEINDEX. See the example in Chapter 6.4.4.
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Only one covariable table file and index is supported. The covariable table indices in
the data file must be consecutive positive numbers greater than zero. For example, the
covariable table file can have rows for indices 1, 2, 3, and 4, but having rows only for
1, 2, and 4 is unacceptable. The data file does not have to reference all indices in the
covariable table and the indices do not need to start from one.

6.4.4 Example: Covariable table in test-day model

Consider again the single trait random regression test-day model example by Schaeffer
and Dekkers (1994) (Chapter 6.4.2). We use the covariable table approach to reduce
the number of columns in the data file. The idea is to use an index in the data file to
specify which regression covariates are used.

In dairy cattle test-day models, a natural covariable table index is days in milk (DIM).
However, for this example, an artificial index was used instead. This allowed the
covariable table to contain only the necessary rows and remain small.

An artificial index was created to be consecutively numbered starting from one to the
number of used test-days. This gave only 23 distinct covariate lines, and covariable
indices numbered from 1 to 23. The covariable table file has this index in the first
column, and its covariates on the same line.

The covariable table file (RRM_table.cov)is
index; DIM; log(305/DIM)

1

O ~J o U1 b W DN

9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

Use of a covariable table file leads to changes in data file where there is no longer the
need to have the covariate values but instead the covariable index. The new data file
(RRM_table.dat)is

HTD; individual, blocks indexs milk;
1 1 1 8 26.0
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2 1 1 14 23.0
3 1 1 19 21.0
1 2 1 5 29.0
2 2 1 11 18.0
3 2 1 16 8.0
4 2 1 20 1.0
1 3 2 2 37.0
2 3 2 6 25.0
3 3 2 13 19.0
4 3 2 17 15.0
5 3 2 22 11.0
6 3 2 23 7.0
2 4 3 1 44.0
3 4 3 7 29.0
4 4 3 12 22.0
5 4 3 18 14.0
6 4 3 21 8.0
4 5 3 3 35.0
5 5 3 9 23.0
6 5 3 15 17.0
5 6 4 4 28.0
6 6 4 10 22.0

The CLIM instruction file is changed as well. The covariable table file has to be
defined using commands TABLEFILE and TARLEINDEX. In addition, the covariates
are referenced in the model using t and the covariate table column number.

The CLIM file is

DATAFILE RRM_table.dat
INTEGER HTD IDcode block index
REAL milk

TABLEFILE RRM_table.cov
TABLEINDEX index

PEDFILE RRM. ped
PEDIGREE G am

PARFILE RRM.var

MODEL
milk = Lact_curve(tl t2) HTD G(1 t1 t2| IDcode)

The solution files will be the same. However, there is a small difference in the solreg
file. The file is now

Trt Reg-No Solution Trait Covariable
1 1 -0.49839E-01 milk T1
1 2 5.2910 milk T2

Thus, instead of the covariable names DIM and 1n305D1IM, there are the table covari-
able column names T1 and T2.

CLIM range expansion Giving several successive covariable table columns can
be shortened using CLIM range expansion (command line option ——usemacros is
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needed):

MODEL
milk = Lact_curve ( ) HTD G(1 | IDcode)

A range expansion is a macro that has the form
<identifier><N>:<M>
which replaces this syntax by a space separated list of

<identifier><N> <identifier><N+1> ... <identifier><M-1>
<identifier><M>

The identifier can be a column name in the data file or a 't’ character indicating column in
a table file. Note that the range expansion macro will lead to expanding all expressions
in a CLIM file that follow the above described form. Thus, it is recommended not to use
the ’’ character in a column or component name when no range expansion is wanted.

6.5 Example: Heterogeneous residual variances in a test-day

model
Consider the random regression model example by Schaeffer and Dekkers (1994)
(Chapter 6.4.4). However, let's now assume that the residual variance differs across
blocks. There are four blocks, with residual variances of 100, 110, 105, and 90 in blocks
1, 2, 3, and 4, respectively.

Important commands in CLIM for the use of heterogeneous residual variance are
RESIDFILE and RESIDUAL. Command RESIDFILE has the name of the residual
variance file. Command RESIDUAL indicates the integer number column having the
residual variance number in the data file.

Our example data stays the same. However, a heterogeneous residual variance file
(RRM_res.var) is needed:

N
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0
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05.0
90.0

In a residual (co)variance file, the first column specifies the residual (co)variance block
number. This number is referred by the integer number in the data file column defined
by the RESTDUAL command. The second and third columns indicate the matrix position.
In our example, the position is always (1,1) as we have a single trait model. The last
column contains the value of the residual variance.

The CLIM instructions for the analysis are

DATAFILE RRM_table.dat
INTEGER HTD IDcode block index
REAL milk

TABLEFILE RRM_table.cov
TABLEINDEX index

PEDFILE RRM.ped
PEDIGREE G am
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PARFILE RRM.var # regular variance file
RESIDFILE RRM res.var # the residual variances
RESIDUAL block # index for residual variance
MODEL
milk = Lact_curve ( ) HTD G(1 | IDcode)
Fixed effect solutions (So1fix) are
Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 3 19.950 HTD milk
1 1 2 4 20.374 HTD milk
1 1 3 4 20.610 HTD milk
1 1 4 4 19.728 HTD milk
1 1 5 4 18.605 HTD milk
1 1 6 4 17.852 HTD milk
Fixed regression effect solutions (Solreg) are
Trt Reg-No Solution Trait Covariable
1 1 -0.49839E-01 milk DIM
1 2 5.2910 milk 1n305DIM
Random regression effect solutions (Solani) are
ID code N-Desc N-Obs Intercept DIM In305DIM
1 1 3 -0.44276 0.36871E-01 -0.36886E-01
2 1 4 0.26983 -0.66036E-01 0.32231E-01
3 0 6 -0.72869 0.68315E-02 -0.47906E-01
4 0 5 1.1020 -0.53657E-02 0.76718E-01
5 0 3 -0.16257 0.69346E-02 -0.14852E-01
6 0 2 -0.48278 0.16646E-01 -0.37681E-01
7 2 0 -0.98720E-01 0.13336E-01 -0.10283E-01
8 2 0 0.45727 -0.23800E-01 0.36316E-01
9 2 0 -0.62850 0.35026E-01 -0.47885E-01
10 2 0 0.45727 -0.23800E-01 0.36316E-01
11 2 0 -0.18730 -0.76072E-03 -0.14474E-01

6.6 Maternal genetic model

The random regression effect models allow quite flexible model descriptions. However,
random regression effects have the same covariance structure, e.g., numerator relation-
ship matrix. Random maternal and paternal effects with correlated genetic effects have
different ID codes to refer to a covariance structure. Thus, nesting within a component
is now by a different class variable. So, we have multiple correlated factors within the

genetic effect.

A random effect may have multiple class effects. For example, the genetic component
has both a maternal and a direct genetic effect. A component name is again needed.

A simple model with a fixed herd effect, random maternal and direct individual genetic

effects is
PEDIGREE G am
MODEL
y = herd G(dam individual)

55



Command Language Interface for MiX99 (CLIM)

Although G (dam individual) looks similar to the random regression models, there
is a notable difference. Here dam and individual are different class effects, not
regression effects by the same class variable. This model specification requires a 2 by
2 genetic covariance matrix for the maternal and individual genetic effects.

Note that the maternal genetic model is different from the model

PEDIGREE G am
RANDOM dam
MODEL
y = herd dam G(individual)

In this context, dam is @ common dam environment effect on all of its progeny. This
dam effect does not have a covariance structure by a relationship matrix, instead the
common dam effects are assumed uncorrelated.

6.6.1 Example: Animal model for a maternal trait
Consider model
try = herd x year + pp, + ap, +ag + €

where herd x year is fixed herd-year effect, p,, is random common dam permanent
environment effect, a,, is random additive maternal genetic effect, and a, is random
additive individual genetic effect, and ¢ is random residual.

The variance components are: maternal permanent environment variance o> = 1,
residual variance o2 = 7, and genetic covariance matrix

G, — {2.0 1.0}

1.0 3.0

The parameter file mat . varis

Random effect; Row, Columns Covariance; Comment
1 1 1 maternal permanent env.
maternal genetic

2 1 1

2 1 2 cov(maternal, individual)
2 2 2 individual genetic

3 1 1 residual variance

The MIXED type parameter file (mat_mix.var) can be

1 LOWER
1.0

2 LOWER
2.0
1.0 3.0

3 LOWER
7.0

Thus, PARFILE MIXED mat_mix.var.

We use the previously introduced data (Chapter 3). The pedigree file (Chapter 3.3.1) can
be kept the same. For the purposes of this example, we modify the data (Chapter 3.1.1)
to have the dam column instead of the sire column (example_mat .dat):
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individual; dam, herdxyears; ones, trait 1, trait 2,

4
6
38
9
10

O o o B DN

1

NN DN

1 90
1 110
1 120
1 30
1 120

200
190
140
120

130

The CLIM code is

DATAFILE

INTEGER
REAL

PEDFILE
PEDIGREE
RANDOM

PARFILE

MODEL
traitl =

example_mat.dat

individual dam herdXyear ones

traitl trait2

my . ped
G
PE
mat .var

herdXyear PE (dam)

The herd-year solutions (Sol1fix) are

Fact. Trt
1 1
1 1

Level

N-Obs

G (dam individual)

Solution Factor Trait
2 99.338
3 121.71

herdXyear traitl
herdXyear traitl

The maternal non-genetic or permanent environment (PE) solutions (So1r01) are

Dam code

2

4
6
8

N-Obs Solution

1 -1.0095
1 1.0095
2 0.24832
1 -.24832

The maternal (dam) and individual direct (individual) genetic effect solutions (Solani)

are

ID code

[y

1

O W 00 J o U b W

2

O O P W whDNhDN

0

OO Fr ONORFr O

N-Desc N-Obs Maternal

1.0095
-1.0095
0.25237
0.75714
0.38060

1.1337
0.69506
0.22383

1.1042
0.33529

Individual

0.50476
-0.50476
0.75714
-0.25238
0.19030
1.8287
0.82328
0.30388E-01
2.0507
0.54356E-01

Note that the content of genetic effect solutions in the Solani file depends on the given
order in the model line. In this example, we gave G (dam individual) with the
maternal genetic effect first, and the direct genetic effect second. Changing the order of
the effects changes the order in the solution file as well, and assumes a different order

of variances in the parameter file (mat . var).
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7 Multi-trait models

Each trait in a multiple trait model is defined by a separate model line, with traits
numbered sequentially so that the trait number corresponds to the model line number.
For example, the first model line represents trait number 1, the second represents trait
number 2, and so on. This numbering system is crucial when creating a covariance
matrix in the PARFILE.

Numbering variance components can sometimes be challenging, especially when
certain traits lack specific effects (such as random regression or maternal effects) that
are present in other traits. These missing effects are indicated by a minus (—) sign in
the model lines.

In the following sections, we will focus on individual animal models, although the
principles apply similarly to sire models.

7.1 Basic multi-trait model

A simple multi-trait model has several traits that are equal in the sense of having the
same effects. For example, both traits have herd-year effects and additive genetic
effects. These effects have different solutions by trait. However, the important fact is
that both traits refer to the same classification column in the data file.

7.1.1 Example: Simple multi-trait model
Consider the multi-trait model data presented in Chapter 3.1.1. First, consider a simple
model where both traits have the same effects:

try = herd X year; + ay + e,
tro = herd X yeary + as + €5

where subscripts 1 and 2 refer to traits 1 and 2. The variance components file (name
mt . var) was already presented in Chapter 3.4.1. CLIM instruction file is:

DATAFILE example.dat

INTEGER IDcode sire herdXyear ones
REAL traitl trait2

PEDFILE my . ped
PEDIGREE IDcode am
DATASORT PEDIGREECODE=IDcode

PARFILE mt .var

MODEL
traitl = herdXyear IDcode
trait2 = herdXyear IDcode

The fixed effect solutions (So1fix) are

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 2 99.760 herdXyear traitl
1 2 1 2 194.87 herdXyear trait2
1 1 2 3 122.93 herdXyear traitl
1 2 2 3 129.73 herdXyear trait2
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The breeding value estimates (Solani) are

ID code N-Desc N-0Obs traitl trait2

1 2 0 -0.13665E-05 -0.68995E-05
2 2 0 -0.13665E-05 -0.68995E-05
3 2 0 0.47969 0.26920

4 2 1 -0.47969 -0.26922

5 3 0 -0.35700E-05 -0.64338E-06
6 3 1 0.95938 0.53842

7 1 0 0.23058 0.78158E-01
8 1 1 0.77386 0.86993

9 0 1 0.43462 -0.14044
10 0 1 0.40004E-02 0.91922E-01

7.2 Including trait-specific effects

MiX99 supports multi-trait models with different effects. However, when using CLIM,
there are some important things to consider. By default, CLIM model line works similarly
to the MiX99 directive file, meaning model effects are column-restricted. In a model
line, each effect has a column which is either present (indicated by a model name) or
missing (indicated by a minus sign) for each trait. Each column (or a set of adjacent
columns) is reserved to one effect only. Therefore, it is crucial to specify effects in a
consistent and correct order. The beta testing version of CLIM removes this restriction,
allowing model effects to be specified without the minus sign indicator for missing
effects. However, when using the beta testing version of CLIM (argument -b), there
may be cases where models are interpreted incorrectly. It is essential to check that the
model generated by CLIM is correct inthe Mix99 DIR.DIR file.

7.2.1 Example: Multi-trait model with missing effects
Consider the multi-trait model data as in Chapter 7.1.1 but use model

try = herd x year + a; + e,
trg = p+ ag + e

where the traits refer to different fixed effect columns. We use the same variance
components file as before. CLIM instruction file is the same except for the model lines:

MODEL
traitl = - herdXyear IDcode
trait2 = ones - IDcode

The fixed effect solutions (So1fix) are

Fact. Trt Level N-Obs Solution Factor Trait
1 2 1 5 160.28 ones trait2
2 1 1 2 88.759 herdXyear traitl
2 1 2 3 137.73 herdXyear traitl

Breeding value estimates in the solani file are

ID code N-Desc N-Obs traitl trait2
1 2 0 0.14293E-05 0.60920E-06
2 2 0 0.14293E-05 0.60920E-06
3 2 0 -2.2842 -2.5112
4 2 1 2.2842 2.5112
5 3 0 -5.8969 -5.8969
6 3 1 1.3284 0.87448
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7 1 0 -4.2747 -4.4635
8 1 1 -7.6804 -7.6189
9 0 1 -6.6913 -7.2448
10 0 1 =9.9586 =9,9459

7.2.2 Example: Different effects by trait using CLIM beta features

The order of effects is unimportant in the CLIM beta version. The model lines in the
example above in Chapter 7.2.1 can be given differently using the CLIM beta version
(e.g., givingmix99i -b model.clm). A natural way of giving would be

MODEL
traitl = herdXyear IDcode
trait2 = ones IDcode

The additional space between the effect names is not important for CLIM, it is just to
make the model easier to read. Another acceptable model would be

MODEL
traitl = IDcode herdXyear
trait2 = ones IDcode

which does not look easier interpret as ITDcode seems misordered.

The breeding value estimates in the Solani solution file would be the same as before.
However, solutions in the so1fix file are printed in different order:

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 2 88.759 herdXyear traitl
1 1 2 3 137.73 herdXyear traitl
2 2 1 5 160.28 ones trait2

The reason for different ordering is the —b option. The —-b option leads to ordering by
column number in the data file. Column herdxyear is before the ones in the data file.
The difference can also be seen in the Mix99_DIR.DIR file.

7.3 Multi-trait random regression model

Multiple trait random regression models are an extension of single trait models. Multiple
traits gives several model lines which requires careful numbering of the variances of
the random regression effecst. The numbering proceeds column-wise, starting with the
first regression effect of the first trait, then the first regression effect of the second trait,
continuing across all traits. Next, the second regression effect of the first trait, followed
by the second regression effect of the second trait, and so on. As a result, in multi-trait
random regression models, the variances for the regression effects of the same trait
are typically not consecutively numbered.

Consider the quadratic random regression function of an individual for two traits:

a
flas, xo) 1 xy a3 2
as

[f(a,l,x1) } B [ 1z af } “

where subscripts 1 and 2 refer to trait number, z; and z, are covariates, and a has
random regression coefficients to be estimated. The functions can be written also

f(a’7 xl) =a11+ 71012+ x% Say3
f(a’7 xz) =91+ T2 a2+ Ig ©a2.3
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where the first subscript in a is trait number, and the second is random regression effect
number. The random regression effects are numbered comlumn-wise

P R

where the numbers in parenthesis mean effect numbers.

The random regression effect numbers are used to identify variance components in
the PARFILE. They also determine the order of estimates in the solution files such as
Solani.

7.3.1 Example: Multi-trait test-day model

Consider the single trait random regression test-day model data presented in Chap-
ter 6.4.2. We expand the data by adding a column of observations for a second trait.
The observation column of the single trait is copied to this new column.

The two traits will have the same random regression function. Assume that within a trait
the genetic covariance matrix stays the same, and between the traits, the correlation is
95 %. Remember that the numbering of regression effects is column-wise. Thus, the
genetic covariance matrix is

44791  42.55145 —0.133 —0.12635 0.351 0.33345
42.55145 44791 —0.12635 —0.133  0.33345 0.351
—0.133 —0.12635 0.073  0.06935 —0.010 —0.0095
—0.12635 —0.133  0.06935 0.073 —0.0095 —0.010
0.351  0.33345 —0.010  —0.0095 1.068  1.0146
0.33345 0.351  —0.0095 —0.010  1.0146 1.068

and let the residual covariance matrix be

100.0  50.0
o= 500 100.0]

Then, the variance parameter file (RRM_mt . var) is

1 1 1 44.791
1 2 2 44.791
1 1 2 42.55145
1 3 1 -0.133
1 4 2 =0,133
1 4 1 -0.12635
1 3 2 -0.12635
1 3 3 0.073
1 4 4 0.073
1 3 4 0.06935
1 3 5 -0.010
1 4 6 -0.010
1 3 6 -0.00950
1 4 5 -0.00950
1 5 1 0.351
1 6 2 0.351
1 5 2 0.33345
1 6 1 0.33345
1 5 5 1.068
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This parameter file can be given using the MIXED format as

N P P oy o

1 LOWER

44 .
42.
=0,
=0
0.
0.

791
55145
133
12635
351
33345

2 LOWER

100
50

100
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1.068

1.01460

100.0
50.0
100.0

44.791

-0.12635 .073

-0.133 .06935 0.073
0.33345 -0.010
0.351 -0.0095 -0.010

The CLIM code is

DATAFILE
INTEGER

REAL

PEDFILE

D

PEDIGREE G

PARFILE

MODEL

milk 1 =
milk 2 =

Fixed effect solutions (So1fix) are

Fact.
1

L N = T S S S e B

Trt

NP NDMNEPENDNENDNEREDNDEDNDE

RRM_mt .dat
HTD IDcode block

-0.0095 1.068
1.0146 1.068

IM 1n305DIM milk_1 milk_2

am

RRM_mt.var

../data/RRM.ped

Lact_curve (DIM 1n305DIM)
Lact_curve (DIM 1n305DIM)

Level

1

o Oy U1 U1 i I W W DN DN

N-Obs

OB D D DD DWW

Solution

20.
20.
20.
20.
20.
20.
19,
19,
18.
18.
17.
17.

Fixed regression effects (Solreg) are

Trt Reg—-No

1

1
2
2

Random regression breeding values (Solani) are

2
1 -0.50424E-01
2

Solution
1 -0.50424E-01

5.2366

5.2366

Trait
milk_1
milk_1
milk_2
milk_2

Covariable

DIM

1n305DIM

DIM

1n305DIM

HTD G(1 DIM 1n305DIM|
HTD G(1 DIM 1n305DIM|

151
151
488
488
718
718
891
891
753
753
992
992
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IDcode)
IDcode)

Factor Trait

HTD
HTD
HTD
HTD
HTD
HTD
HTD
HTD
HTD
HTD
HTD
HTD

milk_1
milk_ 2
milk_1
milk_2
milk_1
milk_2
milk_1
milk_ 2
milk_1
milk_2
milk 1
milk_2



ID (1) (2) DIM(1) DIM(2) 1n305DIM (1)
1 1 3 -0.54418 -0.54418 0.37792E-01 0.37792E-01 -0.43454E-01 ...
21 4 0.34400 0.34401 -0.67204E-01 -0.67204E-01 O0.37635E-01 ...
30 6 -0.85094 -0.85095 0.75663E-02 0.75663E-02 -0.54885E-01 ...
4 05 1.2933 1.2933 -0.65258E-02 -0.65258E-02 0.88939%9E-01 ...
50 3 -0.18603 -0.18603 0.70228E-02 0.70228E-02 -0.16765E-01 ...
6 0 2 -0.57906 -0.57906 0.17727E-01 0.17727E-01 -0.44573E-01 ...
72 0 -0.12304 -0.12304 0.13492E-01 0.13492E-01 -0.12031E-01 ...
8 2 0 0.54577 0.54577 -0.24577E-01 -0.24577E-01 0.42191E-01 ...
9 2 0 -0.75278 -0.75278 0.36106E-01 0.36106E-01 -0.55565E-01 ...
10 2 0 0.54577 0.54577 -0.24577E-01 -0.24577E-01 0.42191E-01 ...
11 2 0 -0.21570 -0.21570 -0.44588E-03 -0.44588E-03 -0.16793E-01 ...
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The last column has been omitted here due to page width restrictions. It is identical to
the second-to-last column. Numbers in parentheses indicate the trait number of the
effect.

7.4 Combining of trait estimates

Combining trait estimates means forcing the effects of different traits to be the same. By
default, it is assumed that effects in different traits will differ and get separate estimates.
Combining trait estimates, or shortly combining of traits, allows for estimating the
same solutions for effects across different traits. These can be fixed or random effects,
although in practice, combining of traits is mostly used in the reduced rank random
regression models. However, the concept can be illustrated by a multi-trait model that
is equivalent to a repeatability model.

The combining of traits is indicated by the '@’ sign in the model lines. After the '@’
sign, a combining group name is provided. This name can be any valid name that
has not already been used. Combining of traits can be specified for any effect that
has a component name. Therefore, it is not possible to use integer number col-
umn names directly when combining traits. This issue can be resolved by assigning
these effects a component name. For example, G (IDcode) @fst. The same ap-
plies to (fixed and random) regression effects. In particular, several effects can be
included using the component name. For example, curve (x logx sqgrtx)@first
OrG(1 DIM DIM2|IDcode) @common.

7.4.1 Example: Repeatability model by multi-trait model

The repeatability model is a multi-trait model where the genetic correlation between
traits is one, residual variances are equal, and residual covariance values are equal.
Residual correlations are equal to o2/ (02 + 0?) where o2 is permanent environment
variance and o2 is residual variance. We consider the repeatability model example
presented in Chapter 6.2.1.

An equivalent two-trait model is

try = herd X year + a + e;
tro = herd X year + a + e

where the random additive genetic effect a can be considered common to both traits.
Genetic variance is as before o> = 3. Residual covariance matrix is

303

20 7.0
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Note that the residual variances are equal to the sum of the permanent environment and
the residual variances in the repeatability model, and the covariance equals repeatability
variance.

The variance components file (nt_repeat .var)is

Random effecty Row, Columns Covariance; Comment

1 1 1 individual genetic
2 1 1 residual variance
2 1 2 permanent environment
2 2 2 residual variance

The repeatability data file changed to multi-trait format (nt_repeat .dat):

individual sire herdxyear; herdxyear, ones trait1 trait 2

4 1 11 21 1 90 200
6 3 11 21 1 110 190
8 5 12 22 1 120 140
9 5 12 22 1 130 120
10 7 12 22 1 120 130

The CLIM code is

DATAFILE mt_repeat.dat

INTEGER IDcode sire hy_1 hy_2 ones
REAL traitl trait2

PEDFILE my . ped
PEDIGREE G am

PARFILE mt_repeat.var

MODEL
traitl = hy_ 1 - G (IDcode) @1
trait2 = - hy_2 G(IDcode) @1

Note that the additive genetic effect (IDcode) must have a name (G in the example)
and assigned a combining group name or indicator ('1’ in the example). Additionally,
a minus sign (-) is required to indicate the use of separate integer columns for the
herd-year effects. Note that the group name or indicator need not be a number but can
have many letters. Thus, the following model lines would be correct as well:

traitl = hy_1 - G (IDcode) @fst
trait2 = - hy_2 G(IDcode)@fst

Estimated herd-year solutions (So1fix) are

Fact. Trt Level N-Obs Solution Factor Trait
1 1 11 2 99.833 hy_ 1 traitl
1 1 12 3 123.01 hy_ 1 traitl
2 2 21 2 194.83 hy_2 trait2
2 2 22 3 129.68 hy 2 trait2

Estimated breeding values (Solani) are
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traitl2
-0.18506E-14
-0.18506E-14
0.33333
-0.33333
.19257E-14
0.66667
0.97731E-01
0.98778
-0.85515E-01
0.71553E-01

ID code N-Desc
1

i
@)
o
()

O W 00 J o U b W
O O F WwhhDNDNDDN
PR, PORFRP ORFL OO O
|
(@}

[

The solutions are the same as in the repeatability model in Chapter 6.2.1. However, no
solutions for the permanent environment effects are calculated because no permanent
environment effect was in this two-trait model.

7.4.2 Example: Reduced rank random regression model

Rank reduction can be used to make covariance matrices of highly correlated random
regression coefficients more independent. Consequently, the size of the covariance
matrix is reduced. In a reduced rank model, coefficients from two or more traits multiply
the same solutions. Convergence of the iterative solver becomes faster for at least two
reasons: equations become less correlated, and there are fewer unknowns to solve.

7.4.3 Example: Reduced rank two-trait model

Consider the two-trait random regression example presented in Chapter 7.3.1. We now
assume that the genetic effects of the first and second traits have been combined, while
the data remains unchanged. For this example, we use the same genetic covariance
matrix as in the single trait example in Chapter 6.4.2:

44791 —-0.133  0.351
Go=| —0.133 0.073 —0.010
0.351 —0.010  1.068

In this exmaple, the reduced rank (co)variance matrix has been derived from the
original genetic (co)variance matrix. In practice, such a reduced rank multi-trait random
regression (co)variance matrix simplifies the model by reducing the number of variance
components (here from the full 6 by 6 matrix), typically based on criteria such as
keeping the amount of (genetic) variance explained above some limit. This reduction
uses eigendecomposition of the (co)variance matrix, from which the eigenvectors of
the most important eigenvalues are selected. Because only a subset of eigenvectors
are used, the values in the new (co)variance matrix may differ those in the original
(co)variance matrix.

The residual covariance matrix will be the same as for the multi-trait model:

100.0  50.0 ]

Ro=1 500 100.0

The variance parameter file (RRM_mt_RR.var) is

1 1 1 44.791
1 2 1 -0.133
1 2 2 0.073
1 2 3 -0.010
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0.351
1.068

100.0
50.0
100.0

This can be given using the MIXED format as

DIM 1n305DIM milk 1 milk_ 2

Lact_curve (DIM 1n305DIM)

1 LOWER
44,791
-0.133 0.073
0.351 -0.010 1.068
2 LOWER
100.0
50.0 100.0
The CLIM code is
DATAFILE RRM_mt .dat
INTEGER HTD IDcode block
REAL
PEDFILE RRM. ped
PEDIGREE G am
PARFILE RRM_mt_RR.var
MODEL
milk_1 =
milk_2 =

Lact_curve (DIM 1n305DIM)

Fixed effect solutions (So1f1ix) are

Fact. Trt
1 1
1 2
1 1
1 2
1 1
1 2
1 1
1 2
1 1
1 2
1 1
1 2

Level

1

o oY U U b I W W NN R

N-Obs

20.
20.
20.
20.
20.
20.
19,
19,
18.
18.
18.
18.

OB D DD DD DWW

Fixed regression effects (Solreg) are

Trt Reg—-No

1

1
2
2

1 -0.50486E-01

2

1 -0.50486E-01

2

Solution

5.2312

5.2312

HTD G(1 DIM 1n305DIM|
HTD G(1 DIM 1n305DIM|

171
171
499
499
728
728
908
908
769
769
007
007

Solution

Trait Covariable
milk_1 DIM
milk_1 1n305DIM
milk_2 DIM
milk_2 1n305DIM

Random regression breeding values (solani) are

ID code N-Desc

1
2

1
1

N-Obs
3
4

Intercept
-0.55454
0.35144
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DIM

IDcode) @fst
IDcode) @fst

Factor Trait

HTD
HTD
HTD
HTD
HTD
HTD
HTD
HTD
HTD
HTD
HTD
HTD

In305DIM

milk_1
milk_2
milk_1
milk_2
milk_1
milk_2
milk_1
milk_2
milk_1
milk_2
milk_1
milk_2

0.37887E-01 -0.44107E-01
0.38179E-01

-0.67308E-01
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Note that the number of estimates in the Solani file is the same as in the single trait
example but estimates are different because more data is used.

H O W 0 J o U b W
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N NDDNDNDDNDDNO O OO

6 —-0.86297
5 1.3125
.18819
.58904
.12543
.55465
.76524
0.55465
.21860

O O O O o N
(@}

0

-0

-0
=0

7.4.4 Example: old Finnish test-day model

This example is not a complete presentation of the first Finnish test-day model. No
data is given, and only the first lactation is considered. This illustrates the potential for
solving complex test-day models currently used to solve dairy cattle breeding values.

This was the Finnish test-day model for first lactation milk, protein, and fat yield. The full
model had two additional traits: the second lactation, and the third with later lactations.
In this subset model, both the permanent environment and the additive genetic effects
are modeled by a curve with six coefficients. However, covariance matrices of these

.76386E-02
-0.
0.
0
0.
.24651E-01
0.
.24651E-01
.41763E-03

66443E-02
70254E-02
17835E-01
13507E-01

36213E-01

effects have size six because all traits are combined into one.

DATAFILE
INTEGER
REAL

PEDFILE
PARFILE
PEDIGREE
RANDOM
TABLEFILE

MODEL
milk

protein

fat

Ter.dat

block IDcode HTM YM SEASON AGE DCC DIM

milk protein

miniTDM.pedi
TDMpara.in

G am+p

HTM PE

fat

finTDMpara.cov
TABLEINDEX DIM

Curve (
PE (
G (

Curve (
PE (
G (

Curve (
PE (
G(

SEASON)

SEASON)

SEASON)

| IDcode)@1lst

| IDcode) @FST

7.5 Multiple trait maternal effects model

Consider first a two-trait maternal effects model. In addition, some fixed effects are
different by trait. Note that spaces between the effect names are only to help read the

model lines.

DATAFILE
INTEGER

B

eef.dat

BREED HERD id dam sex twin damXage &

AGE DCC YM
| IDcode)@1lst
| IDcode) @FST

AGE DCC YM
| IDcode)@lst
| IDcode)@FST

.55550E-01
.90125E-01
.16933E-01
.45274E-01
.12184E-01
.42767E-01
.56331E-01
L42767E-01
.17029E-01

AGE DCC YM HTM &

HTM &

HTM &
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birthXmth HYbirth HY200d HY365d
REAL BirthWeight 200dWeight 365dWeight age200d age365d

PEDFILE Beef.ped
PEDIGREE G amtp

PARFILE Beef.var

RANDOM PE G

MODEL

BirthWeight = = twin sex = HYbirth - PE (dam) G (dam id)
200dWeight = age200d twin sex birthXmth - HY200d PE (dam) G (dam id)

There are several aspects to consider:
Model structure: The model has four types of effects:
+ Fixed regression effect: age200d
+ Fixed classification effects: twin, sex, birthXmth, HYbirth,and HY200d
* Random effect: PE
« Random additive genetic effect: G

The order of effects on the model lines must follow these types. Within each type,
the order of effects is free. However, each effect must consistently be on the same
column on every model line. If an effect is missing in a particular trait line, it should
be indicated with the minus sign (-).

Genetic effects: Both maternal and direct genetic effects are included in the same
named class effect, here defined G. This effect (G) is linked to the pedigree by the
PEDIGREE command, which refers to a pedigree-based relationship matrix (am).

(Co)variances: The (co)variances for the maternal and genetic effects are numbered
column-wise from left to right, following the same convention as in the multi-trait
random regression model. Thus, the PARFILE Beef.varis

Random effect;y Row, Columns Covariance; Comment

1 1 1 non-genetic maternal variance of BirthWeight
non-genetic cov(BirthWeight, 200dWeight)
non-genetic maternal variance of 200dWeight
maternal genetic variance of BirthWeight
maternal cov(BirthWeight, 200dWeight)
maternal genetic variance of 200dWeight
cov(maternal, direct) of BirthWeight
cov(maternal 200dWeight, direct BirthWeight)
direct genetic variance of BirthWeight
cov(maternal BirthWeight, direct 200dWeight)
cov(maternal, direct) of 200dWeight

direct genetic cov(BirthWeight, 200dWeight)

direct genetic variance of 200dWeight

residual variance of BirthWeight
residual cov(BirthWeight, 200dWeight)

W oW N DNDNDNDND DD NN e e
N R A DR DWW W NN R NN
RS Ww N R W N RN R RN
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3 2 2 residual variance of 200dWeight

» Using the MIXED format, i.e., PARFILE MIXED BeefMix.var, the file can be

1 LOWER
1.0
0.1 0.5
2 LOWER
2.0

o = O
oor
o O O
W o
= W
o o

3 LOWER
7.0
1.0 10.0

We add 356-day weight to make a three-trait maternal effects model but assume that
the last trait has only a direct genetic effect, i.e., no maternal genetic effect, and not
non-genetic maternal effect.

DATAFILE Beef.dat
INTEGER BREED HERD id dam sex twin damXage &
birthXmth HYbirth HY200d HY365d
REAL BirthWeight 200dWeight 365dWeight age200d age365d

PEDFILE Beef .ped
PEDIGREE G amtp

PARFILE Beef3traits.var

RANDOM PE G

MODEL

BirthWeight = - twin sex = HYbirth - - PE (dam) G (dam id)
200dWeight = age200d twin sex birthXmth - HY200d - PE (dam) G(dam id)
365dWeight = age365d twin sex birthXmth - - HY365d PE (-) G( - 1id)

The parameter file has now one more genetic variance with covariances to all the others,

nd a residual variance with covariances:
Random effect;y Row, Columns Covariance; Comment

1 1 1 non-genetic maternal variance of BirthWeight
non-genetic cov(BirthWeight, 200dWeight)
non-genetic maternal variance of 200dWeight
maternal genetic variance of BirthWeight
maternal genetic covariance

maternal genetic variance of 200dWeight
cov(maternal, direct) of BirthWeight
cov(maternal 200dWeight, direct BirthWeight)
direct genetic of BirthWeight

cov(maternal BirthWeight, direct 200dWeight)
cov(maternal, direct) of 200dWeight

direct genetic cov(BirthWeight, 200dWeight)
direct genetic of 200dWeight

cov(maternal BirthWeight, direct 365dWeight)

D DD DDDDNDNDNDDNDDND DD DN R
[ 2 Y S SN N N VS I S I S I \C T \C B =R A O N A O )
R os W NP RN RN
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cov(maternal 200dWeight, direct 365dWeight)
direct genetic cov(BirthWeight, 365dWeight)
direct genetic cov(200dWeight, 365dWeight)
direct genetic of 365dWeight

residual variance of BirthWeight

residual co-variance

residual variance of 200dWeight

residual cov(BirthWeight, 365dWeight)
residual co-variance

residual variance of 365dWeight

wW W W W w w NN DN
w W w DD oo 01U
w N BN RO WD

The MIXED format type of parameter file can be

1 LOWER
1.0
0.1 0.5
2 LOWER

WO
O = W
0o o
N W
o o

Currently, the beta testing option (-b) allows this model to be specified without most of
the minus (-) characters. Because effects are ordered based on their column position,
the resulting directive file may differ from the example above. However, despite the
differences in the order of effects on the model line, the solutions from the analysis
remain the same. It is important to note that a minus sign (-) is still required for the third
trait (365dWeight) due to it being a random effect. This guarantees correct numbering
of variance components as defined in the PARFTL.E command.

MODEL
BirthWeight = twin sex HY birth P (dam) G(dam id)
200dWeight = age200d twin sex birthXmth HY_ _200d P (dam) G(dam id)
365dWeight = age365d twin sex birthXmth HY_365d P (-) G( - id)

8 CLIM macros and range expansion

Model lines can become wide and difficult to follow. This is particularly true for multi-trait
random regession models where several covariates are used for each trait. As already
mentioned earlier, macro range expansion can help to reduce size of models and make
easier to read (See paragraph 6.4.4). Macros can be used to make the models even
shorter. They may also help reduce mistakes when writing models.

Consider the example model in Chapter 7.4.4:

MODEL
milk = Curve ( | SEASON) AGE DCC YM HTIM &
PE ( | IDcode)@lst &

G ( | IDcode)@FST
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protein =

Curve (
PE (
G (
fat = Curve (
PE (
G (

| SEASON)

AGE DCC YM HTM
| IDcode)@lst

2

| IDcode) @FST

| SEASON)

AGE DCC YM HTM

>l

| IDcode)@1lst &
| IDcode) @FST

These model lines can be shortened using CLIM macro and range abbreviations
(command line option ——usemacros is currently needed when invoking mix991):

DEFINE CurveMILK
DEFINE CurvePROT
DEFINE CurveFAT

Curve (
Curve (
Curve (

DEFINE Common AGE DCC YM
MODEL
milk = CurveMILK Common
protein = CurvePROT Common
fat = CurveFAT Common

| SEASON)

| SEASON)

| SEASON)
HTM

PE (
PE (
PE (

| IDcode) @1lst G(
| IDcode) @1lst G(
| IDcode) @1lst G(

| IDcode) @FST
| IDcode) @FST
| IDcode) @FST

Macros are user-defined names that represent character strings. When a macro is
referenced, its name is replaced by the corresponding character strings. Important

considerations:

» Macro replacement is done to all defined macro names after their definition. Thus,
it is recommended to give macros just before the MODEL command.

« A macro name must not conflict with any predefined CLIM keywords (e.g., MODEL)
or data column name (e.g., IDcode in the example above).

tended replacements of short names.

It is recommended to use macro names with multiple characters to avoid unin-

» Macros can be nested, i.e., a macro can include other already defined macros.

The following example shows how to use macros to have all fixed effects by macro

nesting:
DEFINE Common AGE DCC YM
DEFINE FixedMILK Curve (
DEFINE FixedPROT Curve (
DEFINE FixedFAT Curve (
MODEL
milk = FixedMILK PE (
protein = FixedPROT PE (
fat = FixedFAT PE (

HTM
| SEASON)
| SEASON)
| SEASON)

| IDcode) @1lst G(
| IDcode) @1lst G(
| IDcode) @1lst G(

Common
Common
Common

| IDcode) @FST
| IDcode) @FST
| IDcode) @F'ST

In this example, the macro named "Common" is defined first and then reused across
three subsequent macros: FixedMILK, FixedPROT, and FixedFAT. These macros
are later used in the model lines, simplifying the model. Note that the macro names do
not need to be the across traits, as is the case here. However, the contents of each
macro must follow the CLIM model rules of the same number of effects and correct

column allignment.
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9 Genomic data models

There are two widely used approches for incorporating genomic data into statistical
models in animal and plant breeding. The first approach includes genomic marker
effects directly into the model. The second approach uses genomic data to construct
a (co)variance structure, such as a genomic relationship matrix, which is then used
to model the (co)variance structure of breeding values. Both types of models are
supported in CLIM. The model that includes genomic marker effects is known as the
SNP-BLUP model. Models that utilize genomic relationship matrix include GBLUP and
the single-step method.

9.1 Genomic marker effects model

Statistical models used in genomic selection often include thousands of SNP markers.
In the SNP-BLUP model, each marker is treated as a regression effect. Including
genomic data within a data file with the observations and other effects would produce a
large file containing both genomic and non-genomic information. Although CLIM macro
range expansion can help in writing the model, separating genomic data to different file
offers some benefits. For example, it is easy to specify genomic data specific options.
CLIM supports the use of covariate matrices, which can have different types of data.
These matrices are defined using the REGMATRIX and REGF ILE commands.

Regression covariates or marker genotypes of the regression matrix can be of three
types:

Fixed by command REGMATRIX FIXED.
Random with common (co)variance by command REGMATRIX RANDOM.

Heterogeneous with marker specific (co)variance by command
REGMATRIX HETEROGENEOUS.

Relevant commands for regression matrices are:

* REGMATRIX for defining the type of the matrix, coefficient columns, and some
other options.

* REGFILE for the name of the file having the marker genotypes.
* REGPARFILE for (co)variance component(s).
For syntax and some explanation, please see Chapter 12.2.

Each line ina REGMATRIX file, as defined by the REGF T L.E command, contains (marker)
values to a single individual. By default, numbers on each line are:

» space separated.

» numbers with any value (also floating point values allowed).

* correspond to a line in the data file specified by the DATAFILE command.
There are commands and options that change these defaults.

The correct order of lines in the REGMATRIX and data files is crucial. Particularly, if TD
or REGINDEX options are not used. When the 1D option is used in REGMATRIX, the
preprocessor verifies that the order of lines in the data and marker files are alligned
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correctly by the ID codes. This reduces the risk of errors in genetic evaluations that
could arise from mismatch of lines in these files. Furthermore, if the marker file (defined
by REGFILE) has individuals not present in the data file, these will be skipped.

Individual ID codes can be located in different columns in the REGFILE and DATAFILE
files. In the REGFTLE, the column of the individual ID code is specified using the 1D
option in the REGMATRIX command. For example,

REGMATRIX RANDOM mySNPs ID=value ...

where value is the column number in the REGFILE file. For the data file, the individual
ID code is specifed by the DATASORT command:

DATASORT PEDIGREECODE=icol

where icol is the integer column name or number in the data file. If either piece
of information is missing, the order of the lines cannot be verified and is assumed to
be correct. For detailed syntax and explanations of these commands, please refer to
Chapters 12.2.4 and 12.2.20.

The ID option in REGMATRIX allows using a marker file that has more genotyped
individuals than those with observations in the data file. This is useful when the
genotype file includes candidate individuals without observation or when the same
marker data is used in the analysis of separate traits, where some individuals may not
have observations for some traits.

9.1.1 Example: simple SNP-BLUP model
Consider the model

Yy = p+ Big1 + Bage + B393 + Baga + P55 + Pegs + €

where the coefficients fs are known, the g terms are unknown random additive marker
or allele effects, and e is the random residual. There are six bi-allelic markers, numbered
1 through 6. For each marker, genotypes are coded as 0 for homozygous first allele, 1
for heterozygote, and 2 for homozygous second allele. Each marker effect corresponds
to the additive effect of the second allele. Thus, two times the estimated marker effect
gives the difference between the two homozygote genotypes.

In general matrix notation, the model can be written as
y=Xb+7Z,g+e

where
* y is the vector of observations,
» X is the design matrix of fixed effects, now a vector of ones (1),
* b is the vector of fixed effects, now the general mean g,
* Z, is the genotype matrix (marker data),
* g is the vector of random marker effects, and

* e is the vector of residuals.
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It is assumed that g ~ N(0,I0}) and e ~ N(0,Ic7). The genetic marker (¢;) and
the residual (0?) variances are assumed to be known. We will first use this basic
SNP-BLUP model to illustrate a set of commands associated with REGMATRIX. Later,
more advanced options are presented, which may improve convergence of the solver.

The input data is provided in two files:

+ Data file (command DATAFILE) contains columns for individual ID code, fixed
effect (general mean), and the observed phenotype.

» Genotype file (command REGF ILE) contains the marker genotype data.

As already mentioned, both files must be aligned such that the records correspond to
the same individuals in the same order. Thus, the first record in the data file and in the
regression matrix file are from the same individual. It is assumed that all genotypes are
known and have been coded by the user. The alignment requirement can be relaxed,
please see Chapter 9.2.2.

Let the data file and marker genotype file are

data file gs_obs.dat | genotype file gs_geno.dat
ID code; mean, y; |idq 1 2 3 4 5 6
1 1 5 1 2 1 0 0 0 0
2 1 6 2 1 1 0 1 0 0
3 1 10 3 1 0 2 2 2 1
4 1 15 4 0 1 1 2 2 2
5 0 0 2 1 1 1
6 0 0 1 2 2

There are six marker genotypes numbered from one to six, which are in columns from
two to seven of the genotype file. The file has six rows of which the last two represent
candidate individuals having no observations.

Let the variance components be:
- the common genetic SNP marker variance o = & = 0.166666666.
« the residual variance o2 = 1.

The variance components for a random REGMATRI X have to be givenin a REGPARFILE
which is different from the regular PARFTLE. The file for the marker genotype variance

(gs_gen.par)is

Effect number Row Column Covariance
1 1 1 0.166666666 marker variance

The regular variance file for PARFILE (gs_res.par) has the residual variance:

Random effect Row Column Covariance
1 1 1 residual variance

The CLIM code is

DATAFILE gs_obs.dat

INTEGER IDcode mean
REAL y
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MISSING -99999.
DATASORT PEDIGREECODE=IDcode

PARFILE gs_res.par # residual variance

REGMATRIX RANDOM SNP ID=1 FIRST=2 LAST=7
REGFILE gs_geno.dat
REGPARFILE gs_gen.par # marker variance

MODEL
y = mean

The covariate columns in REGMATRIX are specified using the FIRST and LAST options.

Please note that no effect name used to define a REGMATRIX can be given in the
model. By default, the effects defined by the REGMATRTIX command are included in all
traits of the model. This behavior can be changed using the REGTRAITS command as
illustrated in Chapter 9.2.3.

The fixed general mean solution (So1£01) is
1 4  7.2604

The marker effect solutions (Solreg_mat) are

Trt Matrix Effect Solution Mat—-Name
1 1 1 -0.66624 SNP
1 1 2 0.11015 SNP
1 1 3 0.27294 SNP
1 1 4 0.55610 SNP
1 1 5 0.76616 SNP
1 1 6 0.87631 SNP

Estimated genomic breeding values can be computed using the formula:
a=14+ Z,g

where i is the estimated general mean, g is the vector of estimated marker effects,
and Z, is the genotype matrix. When the solver is executed with the —p option (e.g.,
mix99s —-p -—s), it calculates genomic breeding values (a) and writes them to the file
yHat .data0. Each line in this file has a breeding value for an individual in the data
file. The values are in the same order as the observations in the data file. To combine
individual ID codes from the data file with the estimated genomic breeding values, the
Unix command paste gs_obs.dat yHat.dataO can be used. This gives output
like:

11 5 6.038078
21 6 7.260414
3 110 10.66087
4 1 15 12.04063

Note that an estimated genomic breeding value is not calculated for an individual
without observation when using the solver command line option —p. To compute
genomic breeding values for all individuals in the genotype file, including those without
observations, use the REGINDEX option (see Chapter 9.2.2).

When there is an additional set of regression effects in a separate file, these can also be
included in the model using an additional set of REGMATRIX commands. All associated
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commands (REGFILE, REGPARFILE etc.) related to a REGMATRIX command need to
appear on consecutive lines in the CLIM file. Please see Chapter 9.2.4. Notes:

1) When the number of regression effects is small, it may be easier and clearer to
include them in the data file and specify them in the model line, rather than using
a REGMATRIX command.

2) Multiple REGMATRIX commands can refer to the same REGFILE, even if some
columns are used for fixed and some for random regression effects.

An example CLIM code having two sets of REGMATRIX blocks is

DATAFILE gs_obs.dat

INTEGER IDcode mean

REAL y

MISSING =99999 .

DATASORT PEDIGREECODE=IDcode

PARFILE gs_res.par # residual variance

REGMATRIX RANDOM SNP ID=1 FIRST=2 LAST=7
REGFILE gs_geno.dat
REGPARFILE gs_gen.par # marker variance

REGMATRIX FIXED regcov ID=1 FIRST=2 LAST=3
REGFILE regcov_geno.dat

MODEL
y = mean

The second REGFILE adds covariates of two regression effects from the regcov_ -
geno.dat file. The second and third columns have the covariates, but the first column
has the ID code of individual.

9.1.2 Centering and scaling marker data

SNP marker data are typically coded using values 0, 1, or 2, representing the number
of a specific allele. To improve solver convergence, the marker values can be centered.
Furthermore, scaling of the marker data allows giving marker variance values in the
unscaled form. The use of SNP marker format, on the other hand, allows having very
large marker files in memory, reduce disk usage, and speed up computations. An
optional missing marker value with some a one-digit integer such as 3 or 9 can be used
for simple imputation.

The marker value (Z})?) for marker m of individual 7 in Z, can be centered and scaled
by subtracting a center value 1, and multiplying this by a scaling value s,,:

Z{ = (Z30 = tm)Sm
Let Z. be centered and scaled marker matrix.
Then, the SNP-BLUP model with centering and scaling is
y=Xb+7Z.g +e

where g. has the marker effects of the centered and scaled marker matrix model.
Centering has no effect on the marker effect solutions, but scaling changes the solutions.
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Furthermore, scaling has to be accounted in the (co)variance of the random marker
effect, i.e., in the file defined by REGPARFTLE, by dividing the unscaled marker variance
by the square of the scaling value.

Centering is specified using the CENTER option in the REGMATRIX command. The
centering value p,, can be:

« average of the markers (default)

 a constant applied to all markers,

» a marker-specific value provided in an external file.
Examples:
REGMATRIX RANDOM SNP ID=1 FIRST=2 LAST=7 CENTER
centers each marker by its average (i.e., mean across individuals).
REGMATRIX RANDOM SNP ID=1 FIRST=2 LAST=7 CENTER=1

centers all markers by value of one, i.e., transforms the default “0,1,2 coding” to “-1,0,1
coding”.

REGMATRIX RANDOM SNP ID=1 FIRST=2 LAST=7 CENTER=mu.dat

reads marker-specific centering values from the file mu . dat. This file must contain one
value per marker, either in a single row or column. For example, when all markers are
centered by value one as done above with the CENTER=1 option, the mu . dat file is

111111

or

e e

It is important that the file has only values for centering. Note that the column numbers
used in the marker file are not used in the center file. For example, assume that the
markers in the previous example had been

REGMATRIX RANDOM SNP ID=1 FIRST=3 LAST=8 CENTER=mu.dat

Then, the same file can be used as the number of markers remains six. Naturally, the
values in the center file can vary across markers unlike in the given example.

Scaling can be specified using the SCALE parameter in the REGMATRIX command.
The scaling value s,, can be:

» a constant for all markers,
+ a marker-specific value provided in a file.

Scaling needs to be accounted in the variance specified in the REGPARFILE

a —

o) =o./s
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This allows the marker variance to be interpreted in the original (unscaled) form corre-
sponding to the additive genetic variance.

For example:
REGMATRIX RANDOM SNP ID=1 FIRST=2 LAST=7 SCALE=0.5

scales all markers with a half. In other words, all markers are multiplied by 0.5,
i.e., s = 0.5. Furthermore, when the SNP marker genotype variance is 1/6 without
scaling, then the 0.5 scaling requires changing the variance in the REGPARFILE to be
1/6/(0.5)% = 4/6 = 0.666667.

The m and m2 options in SCALE multiply the markers by s = \/LR and s = \/% respec-
tively, where m is the number of markers. The SCALE option 2pqg allows using allele
frequencies:

REGMATRIX RANDOM SNP ID=1 FIRST=2 LAST=7 SCALE=2pg

which scales all markers by s = ﬁ where p; is the allele frequency of marker
i=1Pi1l=Di
1 computed in the marker data.

Each marker can be scaled individually by having the scaling values in a file:
REGMATRIX RANDOM SNP ID=1 FIRST=2 LAST=7 SCALE=s.dat

This assumes six separate scaling values in file s . dat. Format of the file is the same
as for centering. In the file, each marker has one value which is used to multiply the
(centered) marker value.

Scaling often requires changing the marker variance. When the same scaling factor is
used for all markers, there is a choice to either change the variance or use the SCALE
option. When marker-specific scaling is used, an alternative is to use marker-specific
variances using the REGMATRIX HETEROGENEOUS command. For simplicity, assume
the same variance is used across all markers, then the commands can be

REGMATRIX HETEROGENEOUS SNP ID=1 FIRST=2 LAST=7
REGPARFILE gs_het.par

The file for the marker-specific genotype variances (gs_het .par) is

Marker number Row Column Covariance

1 1 1 0.166666666 marker 1 variance
2 1 1 0.166666666 marker 2 variance
3 1 1 0.166666666 marker 3 variance
4 1 1 0.166 666 marker 4 variance
5 1 1 0.166 666 marker 5 variance
6 1 1 0.16¢ 66 marker 6 variance

For more complete explanation, please see an example in Chapter 9.2.1. In multi-trait
models, this approach allows marker-specific and trait specific variances when scaling
is always the same across traits.

9.1.3 Example: SNP-BLUP with centering and scaling
Consider the data for the SNP-BLUP model example from Chapter 9.1.1. However, now
the genotypes are centered to be from the “0,1,2 coding” to “-1,0,1 coding”. Furthermore,

the marker matrix is scaled by multiplying it with \/g = 0.57735. Consequently, the
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marker variance must be multiplied by 3, i.e., squared inverse of the scaling factor, such
that the marker matrix times the marker (and eventually the phenotypic) variance is
the same as in the model without scaling. The updated SNP variance file (gs_gen_ -
scaled.par)is

Effect number Row Column Covariance
1 1 1 0.5 scaled marker variance

The new CLIM file remains the same as in the original SNP-BLUP model example
except for the extra options (CENTER and SCALE) for the REGMATRIX command:

DATAFILE gs_obs.dat

INTEGER IDcode mean

REAL y

MISSING -99999.

DATASORT PEDIGREECODE=IDcode

PARFILE gs_res.par # residual variance

REGMATRIX RANDOM SNP ID=1 FIRST=2 LAST=7 CENTER=1 SCALE=0.57735
REGFILE gs_geno.dat
REGPARFILE gs_gen_scaled.par # marker variance

REGMATRIX FIXED regcov ID=1 FIRST=2 LAST=3
REGFILE regcov_geno.dat

MODEL
y = mean

Note that the centering above can be achieved by using the m2 scaling option:

REGMATRIX RANDOM SNP ID=1 FIRST=2 LAST=7 CENTER=1 SCALE=m2

because the number of markers m equals 6 and the scaling was by \/g = \/% = \/%

The solutions between the unscaled/non-centered and scaled/centered marker model
are different. The fixed general mean solution (So1£01) is

1 4  9.1758
while earlier this solution was 7.2604.

The marker effect solutions (Solreg_mat) are

Trt Matrix Effect Solution Mat—-Name
1 1 1 -1.1540 SNP
1 1 2 0.19078 SNP
1 1 3 0.47274 SNP
1 1 4 0.96319 SNP
1 1 5 1.3270 SNP
1 1 6 1.5178 SNP

However, the predicted values remain the same

11 5 6.038079
21 6 7.260415
3110 10.66087
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4 1 15 12.04063

The main reason for the changes in the marker solutions is scaling which multiplies the
marker matrix by the scaling factor 0.57735. Indeed, by multiplying the marker solutions
by the scaling factor gives the same solutions as when no scaling was used (or using
SCALE=1). Centering, on the other hand, is responsible for the change in the general
mean solution as explained in Strandén and Christensen (2011).

9.1.4 REGMATRIX file format

The general regression matrix defined by the REGMATRIX command assumes by
default real valued numbers as the covariates. However, SNP marker data is usually
coded as integer values 0, 1, or 2, with an option to indicate missing marker value.
The preprocessor can be made to check the SNP marker integer values. The format of
the REGFILE input file can be specified using the optional FORMAT parameter in the
REGMATRIX command. The default file format is “n” (for “normal”) but SNP marker
data can also be specified using the “m” (for “markers”) format. For example:

REGMATRIX RANDOM SNP ID=1 FIRST=2 LAST=7 FORMAT=m

By default, SNP marker values in the REGFILE file are space separated. Because
each marker value (0, 1, or 2) is only one character, the spaces effectively double the
file size. To reduce the file size, a more compact “s” (for “squeezed”) format has no
spaces between the marker values. For example, the file gs_geno_nospaces.dat
could contain SNP marker values without space separation:

REGMATRIX RANDOM SNP ID=1 FIRST=2 LAST=7 FORMAT=s
REGFILE gs_geno_nospaces.dat

The file could be:

id SNPs
1 210000
110100
102221
011222
002111
6 001222

g s w N

The REGMATRIX command has an option TMPUTE to specify a missing marker value
in the genotype file. For example:

REGMATRIX ... IMPUTE=3

This instructs the preprocessor to replace, or impute, all genotype values equal to 3
with the average of the non-missing values in the corresponding marker column.

In addition to plain text formats, SNP markers can also be provided in the PLINK binary
.bed format. This is specified using the FORMAT=pb option:

REGMATRIX RANDOM SNP ID=1 FORMAT=pb
REGFILE gs_geno

Note that only the individual-major mode (PLINK2 export format ind-major-bed)
is currently supported. The corresponding .bim and .fam files must be available in
the same directory as the .bed file. When specifying the file name in the REGFILE
command, omit the .bed extension.
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9.2 Advanced marker effect models

The REGMATRIX approach has many options and commands for easier and more
complex models than the basic SNP-BLUP model. In the following examples we
consider the following options:

REGMATRIX HETEROGENEOUS for marker-specific (co)variance matrices.
REGINDEX for estimating breeding values and condense the marker data file.
REGTRAITS to limit REGMATRIX for specified traits.

We also consider the use of many REGMATRIX commands in a CLIM file.

9.2.1 Example: Marker-specific variances in SNP-BLUP

Consider the example in Chapter 9.1.3 but with marker-specific variances. This kind
of model can be performed using a vector of scales for the SCALE option as well. We
consider both approaches.

Assume the marker-specific scale values for the six markers are:

1 2 3 4 5 6
0.90 0.97 1.00 1.00 1.03 1.10

To compute the marker variance for each marker, the common marker variance is
multiplied by the square of the marker-specific scale value. Thus, when the common
marker variance is 0.16666666, the marker-specific variances are:

1 2 3 4 5 6

0.135 0.156816666 0.166666666 0.1 66666 0.176816666 0.201666666

o)\
()}

oy

666

,
()

C

And so, the marker-specific variance file (gs_gen_heter.par)is

Marker number Row Column Covariance

1 1 0.135 marker 1 variance

.156816666 marker 2 variance
56 marker 3 variance

marker 4 variance

marker 5 variance

marker 6 variance

g s w N
(@)

1
1
1
1
1

N e

6
The CLIM code is

DATAFILE gs_obs.dat

INTEGER IDcode mean

REAL %

MISSING -99999.

DATASORT PEDIGREECODE=IDcode

PARFILE gs_res.par # residual variance
REGMATRIX HETEROGENEOUS SNP ID=1 FIRST=2 LAST=7 CENTER=1
REGFILE gs_geno.dat

REGPARFILE gs_heter.par # snp variance

MODEL
y = mean
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The general mean solutionisin So1£01:

1 4 9.2114

The marker effect solutions (Solreg_mat) are

Trt Matrix Effect Solution Mat—-Name
1 1 1 -0.53477 SNP
1 1 2 0.10753 SNP
1 1 3 0.25415 SNP
1 1 4 0.54592 SNP
1 1 5 0.78174 SNP
1 1 6 1.0299 SNP

The predicted values are

11 5 6.064950
21 6 7.145638
3 110 10.68569
4 1 15 12.10372

An alternative approach is to use marker-specific scales and common marker variance.
The REGMATRIX uses the SCALE option and the original REGPARF ILE with the com-
mon marker variance of 0.166666666. The change in the above CLIM file is to use the
following commands:

REGMATRIX RANDOM SNP ID=1 FIRST=2 LAST=7 CENTER=1 SCALE=scales.dat
REGFILE gs_geno.dat
REGPARFILE gs_gen.par # snp variance

where the scales.dat is

1 2 3 4 5 6
0.90 0.97 1.0 1.0 1.03 1.10

The general mean solution in So1£01 is as above:

1 4 9.2114

However, the marker effect solutions (Solreg_mat) are altered by the marker-specific
scaling factors:

Trt Matrix Effect Solution Mat—-Name
1 1 1 -0.59418 SNP
1 1 2 0.11085 SNP
1 1 3 0.25415 SNP
1 1 4 0.54592 SNP
1 1 5 0.75897 SNP
1 1 6 0.93626 SNP

Again, multiplying marker solution by its scaling factor gives the same solution as above.

The predicted values are as above:

5 6.064950
6 7.145638
10 10.68569
15 12.10372

Sw N e
== e e
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9.2.2 Example: Easier SNP-BLUP by REGINDEX
The REGMATRIX command has option REGINDEX which has several advantages for

marker data:

Flexible ordering: The REGFILE file does not need to follow the same order as the
data file.

Avoid data duplication: When individuals have repeated records in the data file,
REGFILE file only needs to appear once.

Automatically breeding values: An additional solution file will be computed having
estimated breeding values for all genotyped individuals.

Suppose individuals have several records in the data file. When no REGINDEX option is
used, the marker data needs to be repeated as well, although the genotype records of
an individual are the same for all the repeats. Let the data file and the marker genotype
file be

data file gs_obs_repeat .dat | genotype file gs_geno_repeat.dat
IDcode; mean, vy y2, ID; 1 2 3 4 5 6
7 1 4 3 7 2 1 0 0 0 0
7 1 5 2 7 2 1 0 0 0 0
7 1 6 1 7 2 1 0 0 0 0
8 1 5 4 8 1 1 0 1 0 0
8 1 6 3 8 1 1 0 1 0 0
8 1 7 2 8 1 1 0 1 0 0
9 1 10 9 9 1 0 2 2 2 1
9 1 11 8 9 1 0 2 2 2
9 1 12 7 9 1 0 2 2 2 1
10 1 14 13 10 0 1 1 2 2 2
10 1 15 12 10 0 1 1 2 2 2
10 1 16 1 10 0 1 1 2 2 2
11 0 0 2 1 1 1
12 0 0 1 2 2

Using the REGINDEX option, the genotype file can remain as already shown for gs_ -
geno.dat, except that the ID code is changed to be like in the table above to match
the new IDcode number in the data file. Thus, the marker file will be smaller and the
computations faster. The gs_geno_new.dat is:

ID; 10 235 3, 4 5 6
7 2 1 00O
8 1 1 100
9 1 0 2 2 1
10 0 1 2 2 2
11 0 0 11 1
12 0 0 2 2 2

Consider a simple SNP-BLUP model with a non-genetic permanent environmental
effect which is IDcode in the model line. The CLIM code for this SNP-BLUP is

DATAFILE gs_obs_repeat.dat

INTEGER IDcode mean
REAL y
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MISSING =99999.
DATASORT PEDIGREECODE=IDcode

RANDOM IDcode
PARFILE gs_pe_res.par

REGMATRIX RANDOM SNP ID=1 REGINDEX=IDcode FIRST=2 LAST=7 &
FORMAT=m CENTER=1 SCALE=0.57735

REGFILE gs_geno_new.dat

REGPARFILE gs_gen_scaled.par

MODEL
y = mean IDcode

The new variance file for PARFILE (gs_pe_res.par) has two variances:

Random effect; Row, Columns Covariance
1 1 1 permanent environment variance
2 1 1 residual variance

The general mean solution is in So1fix:

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 12 9.4831 mean y

The permanent environment effect solutions are in So1r01:

7 3 -0.21007
8 3 -0.38163
9 3 -0.14549
10 3 0.73719

The marker effect solutions (Solreg_mat) are

Trt Matrix Effect Solution Mat—-Name
1 1 1 -1.3672 SNP
1 1 2 0.21000 SNP
1 1 3 0.64404 SNP
1 1 4 1.1572 SNP
1 1 5 1.7081 SNP
1 1 6 1.9181 SNP

Furthermore, the estimated breeding values are in the so1DGV01 file:

7 3 -3.9229
8 3 -2.4654
9 3 1.9049
10 3 3.5511
11 0 1.0400
12 0 3.4298

Note that these solutions do not include the general mean solution.
9.2.3 Example: REGMATRIX for some traits

By default, the REGMATRI X effects are included in all traits in the model. The REGMATRI X
command has a sub-command called REGTRAITS which allows REGMATRIX marker
effects to be included to sepected traits only. To use REGTRAITS, the REGINDEX

option must be used in REGMATRIX.
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Consider the same dataset used in the previous example but now applied to a two-trait
SNP-BLUP model. In this two-trait model:

« trait 1 is modelled using both marker and pedigree information.
« trait 2 is modeled using pedigree information only.

The pedigree file remains the same as used earlier. Both traits have a non-genetic
permanent environment effect.

The CLIM code for this SNP-BLUP is

DATAFILE gs_obs_repeat.dat

INTEGER IDcode mean

REAL y y2

MISSING -99999.

DATASORT PEDIGREECODE=IDcode

PEDFILE my .ped
PEDIGREE G am

RANDOM PE G
PARFILE gs_pe_res_2tr.par

REGMATRIX RANDOM SNP ID=1 REGINDEX=IDcode FIRST=2 LAST=7 &
FORMAT=m CENTER=1 SCALE=0.57735

REGFILE gs_geno_new.dat

REGPARFILE gs_gen_scaled_2tr.par

REGTRAITS vy

MODEL
y = mean PE (IDcode) G(IDcode)
y2 = mean PE (IDcode) G(IDcode)

where the REGTRATITS command is used to indicate that the REGMATRIX is used only
for the first trait.

The PARFILE variance file (gs_pe_res_2tr.par) has (co)variance for three random
effects (PE, G, and residual):

Random effecty Row, Columns Covariance

1 1 1 trait 1 permanent environment variance
1 1 1 permanent environment covariance

1 1 1 trait 2 permanent environment variance
2 1 1 trait 1 genetic variance

2 2 1 genetic covariance

2 2 2 trait 2 genetic variance

3 1 1 trait 1 residual variance

3 2 1 residual covariance

3 1 1 trait 2 residual variance

The SNP variance file must include values for all traits, even if only a subset of traits
is specified in the REGTRATTS command. It is not necessary to provide covariance
values for the unused traits, but all specified variances must be positive. For example,
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consider a SNP variance file gs_gen_scaled_2tr.par which includes variances
for both traits, although REGMATRIX is applied only in the first:

Effect number; Row, Columns Covariance;

1 1 1
1 2 2

trait 1 marker variance

0.5
1.0 dummy trait 2 marker variance

Thus, the variance of the second trait is included only to satisfy the format requirements,
although the solve will not use the value in the computations.

The general mean solution is in So1fix:

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 12 9.3485 mean y
1 2 1 12 5.8999 mean y2

The permanent environment effect solutions are in So1r01:

7 3 =0.79547 -1.3415
8 3 -0.77131 -1.1045
9 3 0.19172 0.54262
10 3 1.3751 1.9035

The marker effect solutions (Solreg_mat) are

Trt Matrix Effect Solution Mat—-Name
1 1 1 -1.0547 SNP
1 1 2 0.15318 SNP
1 1 3 0.50837 SNP
1 1 4 0.90154 SNP
1 1 5 1.3231 SNP
1 1 6 1.4763 SNP
2 1 1 0.0000 SNP
2 1 2 0.0000 SNP
2 1 3 0.0000 SNP
2 1 4 0.0000 SNP
2 1 5 0.0000 SNP
2 1 6 0.0000 SNP

Note that the second trait REGMATRIX marker effect solutions are given although the
trait does not have marker effects. These solutions are zero.

The polygenic additive genetic solutions (Solani) are

1 2 0 -0.92551E-07 —-0.88344E-06
2 2 0 -0.92551E-07 -0.88344E-06
3 2 0 0.38229E-07 -0.53506E-06
4 2 0 0.38229E-07 -0.53506E-06
5 3 0 0.29552E-06 0.66125E-06
6 3 0 0.29552E-06 0.66125E-06
7 1 3 -0.26985E-01 -0.43328

8 1 3 -0.20944E-01 -0.14912

9 2 3 0.47930E-01 0.58241
10 2 3 0.31980 1.4006
11 0 0 0.18387 0.99149
12 0 0 0.18387 0.99149

Furthermore, the marker based genetic breeding values are in the so1DGV01 file:
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7 6 -3.0392 0.0000
8 6 -1.9097 0.0000
9 6 1.4895 0.0000
10 6 2.7457 0.0000
11 0 0.81401 0.0000
12 0 2.6572 0.0000

Also here the second trait solutions are given although this trait has no REGMATRIX
marker effects in the model.

9.2.4 Example: Hybrid marker effects model
Multiple regression matrices are supported. Currently, CLIM allows up to five regression
matrix files using the REGMATRIX and REGF ILE commands.

Consider a hybrid genomic model
y = 1M+ ngf + ngm +pre + e
where

* y is vector of observations,

1 is vector of ones,

u is the general mean,

Z; is matrix of centered and scaled female parent marker genotypes,

g is vector of female marker effects, and

Z.,, is matrix of centered and scaled male parent marker genotypes,

g, is vector of male marker effects, and

W,, is incidence matrix for p.,
* p. is vector of non-genetic permanent environment effects,
* e is the residual vector.
We consider simple centering by 1 and scaling by the number of markers.

We consider a two-trait hybrid genomic marker effects model and a data with repeated
observations. We will use the REGTINDEX option to allow giving the genotypes of an
individual only once.

Convergence of a marker effect based hybrid model can be slow because the parental
effects may try to estimate similar genetics. In some cases convergence can be
improved by using the second-level. The second-level preconditioner is invoked by the
solver program options. For example, giving value ’-sp 100’ for the solver mix99s can
enhance convergence.

It is assumed that p. ~ N(0,Py®I) and e ~ N(0, Ry ® I). For the markers: g; ~
N(0,G;®1I)and g,, ~ N(0,G,, ®I). In the following, we assume

0.25 0.10} Ry — {1.00 0.10] G, - {1.00 0.70

Po= {0.10 0.25 0.10 1.00 0.70 1.00

1’ and G, — {0.90 0.60]

0.60 1.10

The CLIM code for this hybrid marker effects model is
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DATAFILE gs_obs_repeat_hybrid.dat

INTEGER id female male mean
REAL yl y2
MISSING —-99999.

PARFILE CLIM
1 LOWER # PE
0.25
0.10 0.25
2 LOWER # residual
1.00
0.10 1.00

REGMATRIX RANDOM SNPfemale ID=1 REGINDEX=female FIRST=2 LAST=7 &
FORMAT=m CENTER=1 SCALE=m

REGFILE geno_female.dat

REGPARFILE female_gvar_2tr_ hybrid.par # snp variance

REGMATRIX RANDOM SNPmale ID=1 REGINDEX=male FIRST=2 LAST=7 &
FORMAT=m CENTER=1 SCALE=m

REGFILE geno_male.dat

REGPARFILE male_gvar_2tr_ hybrid.par # snp variance

RANDOM PE

MODEL
yl = mean PE (id)
y2 = mean PE (id)

Let the data file file (gs_obs_repeat_hybrid.dat) be

IDcode; ID_female, ID_males means yi Y2, Xs

1 11 21 1 4 3 —-0.5
1 11 21 1 5 2 0.0
1 11 21 1 6 1 0.5
2 12 22 1 5 4 -0.5
2 12 22 1 6 3 0.0
2 12 22 1 7 2 0.5
3 13 23 1 10 9 -0.5
3 13 23 1 11 8 0.0
3 13 23 1 12 7 0.5
4 14 24 1 14 13 —-0.5
4 14 24 1 15 12 0.0
4 14 24 1 16 11 0.5

The SNP variance files (female_gvar_2tr_hybrid.parandmale_gvar_2tr_-—
hybrid.par) are

Effect number Row Column Value

1 1 1 1.0 female trait 1 genetic variance
1 1 2 0.7 genetic covariance
1 2 2 1.0 female trait 2 genetic variance

and
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Effect number Row Column Value

1 1 1 0.9 male trait 1 genetic variance
1 1 2 0.6 genetic covariance
1 2 2 1.1 male trait 2 genetic variance

The parent genotype files are:

geno_female.dat for female parent:

femalelD 1 2 3 4 5 6
11 0120 2 2
12 11110 2
13 1202 01
14 2 002 20

geno_male.dat for male parent:

malelD 1 2 3 56
21 1212 21
22 100 10 0
23 01 0001
24 212 02 1

The general mean solution is in so1fix:

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 12 9.0649 mean yl
1 2 1 12 6.0634 mean y2

The permanent environment effect solutions are in So1r01:

1 3 -0.30407 -0.29626
2 3 -0.43184 -0.41147
3 3 0.28980 0.28449
4 3 0.44610 0.42324

The marker effect solutions (Solreg_mat) are

Trt Matrix Effect Solution Mat-Name
1 1 1 1.4696 SNPfemale
1 1 2 —=0.29970 SNPfemale
1 1 3 =-2.0412 SNPfemale
1 1 4 2.0412 SNPfemale
1 1 5 0.54570 SNPfemale
1 1 6 -2.3141 SNPfemale
1 2 1 0.26527 SNPmale
1 2 2 0.21766 SNPmale
1 2 3 1.0113 SNPmale
1 2 4 -1.8028 SNPmale
1 2 5 0.48293 SNPmale
1 2 6 0.74604 SNPmale
2 1 1 1.4446 SNPfemale
2 1 2 —-0.28536 SNPfemale
2 1 3 -2.0118 SNPfemale
2 1 4 2.0118 SNPfemale
2 1 5 0.52111 SNPfemale
2 1 6 —-2.2724 SNPfemale
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2 2 1 0.28057 SNPmale
2 2 2 0.23232 SNPmale
2 2 3 1.1028 SNPmale
2 2 4 -2.0020 SNPmale
2 2 5 0.51289 SNPmale
2 2 6 0.82223 SNPmale

The marker based genetic breeding values for both parent groups are in the own files
by the REGMATRIX number. The female parent genomic breeding value solutions are
inthe so1DGVO1 file:

11 6 -2.9886 -2.9474
12 6 -1.1675 -1.1404
13 6 1.3215 1.3134
14 6 3.5565 3.4894

The male parent genomic breeding value solutions are in the So1DGV02 file:

21 6 -0.44997 -0.51310
22 6 -1.0035 -1.0901
23 6 0.17666E-01 0.43172E-01
24 6 1.4543 1.5915

9.3 Genomic BLUP (GBLUP) model

A simple single trait SNP-BLUP model using matrix notation is
Yy = Xb + ch + e

where

* y is vector of observations,

X is the fixed effect design matrix,
* b is vector of unknown fixed effects,
» Z. is a matrix of centered and scaled SNP marker genotypes,

g is a vector of unknown random marker effects,

e is the random residual.

An equivalent GBLUP model solves the breeding value vector u = Z_g without the need
to solve the marker effects g. The model is

y=Xb+Z,u+e

where Z, is an incidence matrix linking breeding values u to the observations y.

In SNP-BLUP, it is assumed that g ~ N(0,I07). In the GBLUP model, it is assumed
that u ~ N(0,Go;) where G = Z.Z/, is the genomic relationship matrix, o}, = 02/s*, o
is the marker variance, and s is the scaling value.

Recall that the centered and scaled marker value for marker m of individual i is
ch,m - (Zgg - :um>8m

where Z?)* is the original genotype, and ., and s,, are the center and scale values,
respectively, of marker m. Here we assume that a common scaling factor for all markers
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s has been used. Note that Z. can include genomic data of the candidate individuals as
well. Because these genotypes are included in the genomic relationship matrix, genomic
breeding values are estimated for the candidate individuals without observations as well.
In order to estimate breeding values using the GBLUP model, MiX99 needs inverse
of the genomic relationship matrix, instead of the marker information needed by the
SNP-BLUP model.

9.3.1 Example: Genomic relationship matrix
Consider the centered and scaled marker data in the SNP-BLUP model example in
Chapter 9.1.3. The scaling factor s is equal to half the number of markers, i.e., 3.

The centered and scaled marker matrix is

1 0 -1 -1 -1 —1]
0 0 -1 0 -1 -1
Z 100 -1 1 1 1 0
V3| -1 0 0o 1 1 1
-1 -1 1 0 0 0
-1 -1 0 1 1 1

In the SNP-BLUP example, the scaling factor of the matrix matrix was \/g = 0.57735.
Thus, the covariance matrix is

5 3 -3 —4 —2 —4]
3 3 -2 -2 -1 =2
B , -3 -2 4 2 2 3
G=2.12. = -4 -2 2 4 1 4 /3
-2 -1 2 1 3 2
-4 -2 3 4 2 5

which is called genomic relationship matrix. Mixed model equations require the inverse
of this matrix. MiX99 will not compute it, and the user will have to provide a pre-
computed inverse matrix. In our case, the inverse is

o7 =15 15 75 24 -39
—15 6 -3 —-18 —6 9
15 -3 6 21 6 —12

7D =18 21 105 33 =57

24 -6 6 33 12 -—18

| —39 9 —-12 =57 —-18 33

9.3.2 Inverse genomic relationship matrix file format
The inverse of the genomic relationship matrix is provided in a file stored in two
alternative formats:

» Co-ordinate (Yale) sparse matrix format.

 Lower triangle dense format.
The file can be in text or in binary format (see Chapter 9.3.3). In the co-ordinate sparse
matrix format, only non-zero values of the matrix need to be exist in the file. In the lower
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triangle dense matrix format, all lower triangle elements of the matrix are in the file,
also the zeros. Because the inverse of the genomic relationship matrix has often mostly
non-zero values, the lower triangle dense matrix format is often preferred because it
typically gives a smaller file size, is faster to read to RAM by the solver, and allows
faster computations.

The default inverse matrix file format is the co-ordinate (Yale) sparse matrix format.
In this format, each non-zero element in the lower triangle of the matrix is given its
element position. Consider the inverse matrix in Chapter 9.3.1 and store the matrix in
file iG_101.dat:

11 57
2 1 -15
2 2 6
31 15
32 -3
3 3 6
4 1 75
4 2 -18
4 3 21
4 4 105
51 24
52 -6
5 3 6
54 33
55 12
6 1 -39
6 2 9
6 3 -12
6 4 =57
6 5 -18
6 6 33

Note that the element positions are the individual ID codes. In our case, they are from
one to six. The ID codes need not be consecutive or in increasing order.

An alternative is the lower triangle dense matrix format. In the example case, the format
(infile 1GL_101.dat)is:

6 0
123456
57
=15 6
15 -3 6

75 =18 21 105
24 -6 6 33 12
=39 9 -12 -57 -18 33

This matrix file has two header rows:
« The first row has the values 6 and 0:
— 6 indicates the size of the matrix, i.e., the number of genotyped individuals,
— 0 indicates that this is a full inverse.

» The second row has the ID codes of the genotyped individuals. Their order define
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the row (and column) order of the lower triangle matrix that follows.

The matrix values are listed row by row, corresponditing to the lower triangle of the full
matrix.

The ID codes do not have to be sorted in increasing order as given above. The previous
matrix can be given as

6 0
312456
6
15 57
=3 =15 6

21 75 -18 105
6 24 -6 33 12
-12 -39 9 -57 -18 33

Despite the order diffrence, the GBLUP model computations will give the same results.

9.3.3 Binary inverse genomic relationship matrix file

It is recommended to use the Fortran unformatted binary file format or the stream binary
file format to achieve fast reading (and writing) of a matrix. When using the hginv
program to calculate matrix inverse, a file name having a ’.bin’ suffix will automatically
write a Fortran unformatted binary file. When the suffix is ".raw’, the file be in the stream
binary format. MiX99 reconginizes these suffixes and reads the files correctly provided
the files have been written correctly. A lower triangle dense matrix format gives more
efficiency as well because it often takes less disk space and is faster to read to memory
when the matrix is dense.

In case the hginv is unavailable, below is a detailed description of contents of the
matrix file for binary file formats. Particularly the Fortran unformatted binary and stream
file formats need to be followed exactly and use the given number precision.

 sparse matrix format.
Each line consists of three numbers: <i> <j> <value>

where <i> and <j> are 8 byte integer values for matrix position and <value> is
matrix value in double precision. Individual ID codes are used for matrix position
of a value.

* lower triangle dense matrix format.
The file has three sections:
— firstline: <i8> <id4> <f4> <f4> <f4>

where <i 8> is an 8 byte integer for the size of the matrix, and <i4>is a 4
byte integer for the number of core individuals in APY (Chapter 9.3.7), while
the single precision values <£4> are ignored.

— second line: individual ID codes in 8 byte integers.

— lower triangle dense matrix, where lines and columns are in the order of the
ID codes in the second line.
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All values are double precision floating point numbers. The form of the matrix
follows the format given in the examples, except that in text files, the first line need
not include the last 3 values (<£4>).

9.3.4 Defining a GBLUP model

CLIM allows several ways to define a GBLUP model. The easiest is to have inverse
of the genomic relationship matrix in a file and assign it to the additive genetic effect.
Then, the estimated genomic breeding values are stored to the solani file. The CLIM
commands are:

» use the PEDFILE and PEDIGREE commands. For example,

PEDFILE LOWER iGL_101.dat
PEDIGREE IDcode FILE

Note how the existence of the inverse covariance matrix in a file for the individual
genetic effects is indicated by option FILE in the PEDIGREE command.

 use the GRLUP command. For example,
GBLUP IDcode LOWER iGL_101.dat

In both cases, the .OWER option is used to indicate that the inverse genomic matrix in file
iGL_101.dat isin the lower triangle dense matrix format. In addition, IDcode refers
to the integer column in the data file having the individual ID code. Both approaches
lead to the same model and computational approach. The first approach illustrates that
a GBLUP model is a form of a pedigree-based approach where the inverse relationship
matrix is in a file. Thus, this approach assumes that the random effect is an additive
genetic effect and is the last effect on the model line.

An alternative is to use the COVFILE to associate the inverse genomic relationship
matrix to a random effect:

COVFILE IDcode LOWER iGL_101.dat

Because this can be done to any random effect (other than the residual), the effect has
to be defined to be random using the RANDOM command. This is not necessary for the
additive genetic effect as it is by definition the second last random effect (the residual
being the last).

The inverse genomic relationship matrix can be provided in the co-ordinate format.
Then, the file is assumed to have all non-zero elements of the lower triangle of the
matrix. Because it may be inconvenient to provide only the lower triangle elements, a
mixed format is available which assumes that only upper or lower triangle element is
given in the file. Thus, instead of the LOWER option, the MIXED option is used. This
option assumes that an off-diagonal value is stored only once, but it can be in either
upper or lower triangle of the matrix. For example,

GBLUP MIXED iG_101.dat

The MIXED option must be used with caution because the preprocessor will not check
if a matrix element appears multiple times (e.g., both as an upper and lower triangle
element) in the file. If an upper and lower triangle element is given then both will be
used to refer to the upper and lower matrix, i.e., the element is used twice.

94



Command Language Interface for MiX99 (CLIM)

9.3.5 Example: GBLUP model

We will make the SNP-BLUP model example in Chapter 9.1.3 using GBLUP. In SNP-
BLUP, the marker variance was in a separate file due to the markers being defined
using the REGMATRIX command. When using the GBL.UP command, the variance(s) of
genomic breeding values are included in the random effect variances of the PARFILE
command. Thus, in this example, the variance components file (gs_scaled.par)is

Effect number; Row, Columns Covariance

1 1 1 scaled marker variance
2 1 1 residual variance

Note that here Z.Z! was used the genomic relationship matrix. This is known as
VanRaden method 1 (VanRaden (2008)) genomic relationship matrix and it includes
scaling of the markers to the scale of the additive genetic variance. In our case, allele
frequencies were assumed to be 0.5 for all markers, which leads to the VanRaden
method 1 type scaling factor to be % where m is the number of markers.

The CLIM code for GBLUP is

DATAFILE gs_obs.dat

INTEGER IDcode mean

REAL y

MISSING —-99999.

DATASORT PEDIGREECODE=IDcode

PARFILE gs_scaled.par # parameters
GBLUP IDcode LOWER iGL_101.dat

MODEL
y = mean IDcode

The predictions are like in Chapter 9.1.3. The fixed general mean solution (So1fix) is

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 4 9.1758 mean y

The breeding value solutions (Solani) are

1 1 1 -3.1377
2 1 1 -1.9154
3 1 1 1.4850
4 1 1 2.8648
5 1 0 0.82903
6 1 0 2.7547

An alternative to using the GBL,UP command for a GBLUP model, is to use the COVFTLE
command:

COVFILE IDcode LOWER iGL_101.dat
RANDOM IDcode

where the line having COVFILE command replaces the line having the GRBLUP com-
mand, and there is an additional line for defining IDcode to be the first random effect.
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The covFILE command is useful in models that have many random effects, each with
its own genomic relationship matrix, such as the hybrid model (see Chapter 9.3.9).

The results using the COVFILE command are the same. The solfix file is exactly the
same. However, the breeding value solutions are in the so1r01 file:

1 1 -3.1377
2 1 -1.9154
3 1 1.4850
4 1 2.8648
5 0 0.82903
6 0 2.7547

The file format is different but the solutions are the same.

When the solver is executed with the —p option When the solver program has been
executed with the —p option (e.g., mix99s -p -s), the yHat .data0 is produced.
Giving the Unix command paste gs_obs.dat yHat.data0 combines individual
ID code numbers in the data file with the predicted values which are equal to the
estimated genomic breeding values. Result is

11 5 6.038090
21 6 7.260419
3 110 10.66087
4 1 15 12.04062

Note that these values can be calculated by adding the fixed general mean solution
9.1758 to the breeding value solutions in the solani (orthe sol1r01) file.

9.3.6 Example: GBLUP and weights for residual variance

Usually it is assumed that the residual variance is the same for all observations, i.e., a
homogeneous residual variance model. However, phenotypic records for genotyped
individuals are not always original raw observations but are adjusted or pre-corrected
observations where a larger data has been used in a statistical model to account for non-
genetic effects. These adjusted observations can have different precision depending
on the amount of data to estimate non-genetic effects. Consequently, the adjusted
phenotypes have heterogeneous residual variances.

The heterogeneity of residual variances can be accounted for using appropriate weights.
This approach is often used in so called two-step genomic evaluation where the first step
corrects for non-genetic effects, and the second step uses the corrected observations
in a genomic prediction model. For example, VanRaden (2008) defined weights as
r/(1 —r), where r is the genotyped individual’s reliability based on the amount of own
or progeny data information. Computation of reliabilities for weights need to be done
carefully to avoid double counting of the same information.

Consider the GBLUP example in Chapter 12.2.6. Let the data file named gs_obs_ -
weights.dat be

ID code mean y weight

1 1 5 0.8
2 1 6 1.0
3 1 10 1.5
4 1 15 4.0

where the data has been'éugmented with column of weights.
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The CLIM code for GBLUP is

DATAFILE gs_obs_weights.dat

INTEGER IDcode mean

REAL y weight

MISSING -99999.

DATASORT PEDIGREECODE=IDcode

PARFILE gs_scaled.par # parameters
GBLUP IDcode LOWER iGL_101.dat

MODEL
y = mean IDcode | WEIGHT=weight

The predictions change slightly. The fixed general mean solution (so1fix)is

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 4 10.061 mean y

The breeding value solutions (Solani) are

1 1 1 -3.8581
2 1 1 -2.2830
3 1 1 1.3043
4 1 1 3.7427
5 1 0 0.73231
6 1 0 3.4015

9.3.7 Example: GBLUP with APY

Algorithm for Proven and Young (APY, Misztal et al. (2014)) is an approach for com-
puting inverse genomic relationship matrix having many genotyped individuals. The
approach separates the genotyped individuals to two groups: core and non-core. The
inverse genomic relationship matrix is made such that the matrix block of the non-core
individuals is diagonal. Often the number of core individuals is set to be less than
20,000 allowing for an APY inverse genomic relationship matrix to be build for millions
of genotyped individuals. This is possible because the matrix has be made sparse in
the non-core block where only the diagonal is stored.

The APY inverse relationship matrix can be stored in the co-ordinate format as given
earlier. However, the lower triangle dense format is often faster in computations.
A special lower triangle dense format is available for APY where only the diagonal
elements of the non-core block are stored.

In the lower triangle dense matrix format, the first line has two numbers. The second
number is used to inform the number of core individuals in APY. For example, consider
the earlier genomic relationship matrix of six individuals. A core of 2 individuals would
give a lower triangle dense matrix format file 1GL._APY.dat:

6 2

123456

8.492311

-3.600001 3.276924

.6923077 .2307692 1.384615
4.500002 -1.500001 4.500001
.6923078 -.2307693 1.384615
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1.800001 -.6000003 1.800000

In this format, the core individuals are 1 and 2, and the rest are non-core individuals.
The diagonal of the 4 non-core individuals is in the last column of the lower triangle
dense matrix format (values on the column starting from 1.384615 ). This matrix takes
less memory than the original full inverse relationship matrix when read to RAM.

The CLIM code for GBLUP is like before

DATAFILE gs_obs.dat

INTEGER IDcode mean

REAL y

MISSING -99999.

DATASORT PEDIGREECODE=IDcode

PARFILE gs.par # parameters
GBLUP IDcode LOWER iGIL_APY.dat

MODEL
y = mean IDcode

The fixed general mean solution (Sol1fix)is

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 4 9.1466 mean y

The breeding value solutions (Solani) are

1 1 1 -3.1217
2 1 1 -1.8962
3 1 1 1.6053
4 1 1 2.8260
5 1 0 1.2448
6 1 0 2.4896

9.3.8 Example: GBLUP with a polygenic effect
Model is
y=1u+2Z,u+7Z,a+e

where
+ u is the vector of random additive genetic effects from genomic data
* a is the vector of random additive polygenic effect using pedigree information
* e is the vector of random residuals.

Matrix Z,, is the incidence matrix of the genomic part as in the GBLUP example (Chap-
ter 9.3.5), and matrix Z, is the incidence matrix relating observation of an individual in
y to its polygenic (pedigree-based) breeding value in a. The model is the same as in
the previous example except for the polygenic a effect.

The random effects have the following assumptions: u ~ N(0,Go?2), a ~ N(0, Ac?),
and e ~ N(0,I0?) where G is the genomic relationship matrix (see Chapter 9.3.4) and
A is the pedigree-based relationship matrix. The example A matrix uses the pedigree
infile gs_poly.ped:
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individual; sire, damg
2

o U b W N
O U1 O b
O O o 6 W W

0

This small pedigree has some non-zero inbreeding coefficients. We account for the
inbreeding coefficients in the inbreeding coefficient file named gs_poly.inbr, when
using the A~! matrix in MiX99. The file is

individual; number, F
5 1 0.00000
6 2 0.00000
3 3 0.00000
4 4 0.00000
2 5 0.25000
1 6 0.37500

where the first column has the original individual ID code number, and the last column
has the inbreeding coefficient. When no inbreeding coefficient file is given, MiX99 builds
A~! assuming all inbreeding coefficients are zero.

The polygenic effect has the pedigree to make the computations due to the pedigree-
based numerator relationship matrix. Thus, the polygenic effect takes the additive
genetic effect. To include a separate random effect with the genomic relationship matrix
in the model, the COVFILE command has to be used. Consequently, the RANDOM
command needs to be used as well. The numbering of the random effects is

1 genomic
2 polygenic

3 residual.

In this example, the variance components are: common scaled marker variance o2 = 1,

polygenic variance o2 = 1, and the residual variance ¢? = 1. The variances are in the
file gs_poly.par:

Random effecty Row, Columns Covariance

1 1 1 scaled marker genetic variance
2 1 1 polygenic variance
3 1 1 residual variance

The CLIM code is

DATAFILE gs_obs.dat

INTEGER  IDcode mean

REAL y

MISSING -99999.

DATASORT PEDIGREECODE=IDcode
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PARFILE gs_poly.par
COVFILE genomic LOWER iGL_101.dat

PEDFILE gs_poly.ped
PEDIGREE polygenic am

INBRFILE gs_poly.inbr
INBREEDING PEDIGREECODE=1 FINBR=3

RANDOM genomic polygenic

MODEL
y = mean genomic (IDcode) polygenic (IDcode)

Note that

« the RANDOM command gives the numbering of the random effects (other than
residual). The polygenic effect must be the last random effect in this statement.

* the words genomic and polygenic are NOT reserved names but names just
to identify different random effects.

» the COVFILE command is used to indicate that the random effect genomic has
an inverse (genomic) relationship matrix in the file 1G1L._101.dat.

The fixed general mean solution (So1fix)is

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 4 9.4191 mean y

The genomic breeding value estimates (So1r01) are

1 1 -2.8721
2 1 -1.7818
3 1 1.4371
4 1 2.5866
5 0 0.79525
6 0 2.5158

The additive polygenic solutions (Solani) are

1 1 1 -3.4987
2 1 1 -2.2013
3 1 1 1.0060
4 1 1 3.0177
5 1 0 0.79525
6 1 0 2.5158

Note that in practice this model may have convergence problems because the poly-
genic and genomic breeding value effects try to estimate the same entity: genetics.
Thus, this model must split the genetic breeding value into its polygenic and marker
components where the genomic breeding values have a genomic relationship matrix,
and the polygenic effect has a pedigree-based relationship matrix. In this example,
these matrices are very different but in practice, they can be similar which increases
convergence problems. Furthermore, in this example, the total phenotypic variance was
increased by including the polygenic pedigree-based genetic effect having the same
variance as the genomic component. This is seldom the case in practice.
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An alternative equivalent model to this model would be to make a relationship matrix
that combines the genomic and pedigree-based relationship matrices. For example,
let G, = (1 — w)G + wA where w is so called residual polygenic proportion. Then,
the GBLUP model uses G, instead of G~!. Thus, the instructions will be the same
as for the GBLUP model with the PEDFILE replaced by the new inverse covariance
matrix G_,' where the pedigree-based and the genomic relationship matrices have
been combined. This will yield the same estimated complete breeding values. However,
in practice, the convergence of the iterative PCG method is likely to be better due
to not having to estimate two components of the genetic breeding value for every
individual. However, computationally this approach requires computing A for the
genotyped individuals which may be impossible with large number of genotyped.

The residual polygenic proportion w describes the proportion of genetics associated
with the polygenic effects. In our example, the ratio of the polygenic variance (0.5) to
the sum of genomic and polygenic variances (1.0) gives w = 0.5. Thus, the equivalent
GBLUP model uses a blended genomic relationship matrix G,, = (1 — w)G + wA where
w = 0.5. In our case, the G,,! matrix in the lower triangle dense matrix format is (file
iGLw50.dat):

6 0

123456

2.113669

-1.877159 2.582680

—.4438857 .3213761 1.842661

.5862194 -.6652937 —-.6519180E-01 2.194285

.2370449 -.2535169 -.8087914 -.3584017 1.536891

.3305978 -.8519997E-01 -.9081077 -1.240688 .3753554 2.117931

The CLIM code is simple GBLUP model

DATAFILE gs_obs.dat

INTEGER IDcode mean

REAL %

MISSING -99999.

DATASORT PEDIGREECODE=IDcode

PARFILE gs_wb50.par
GBLUP IDcode LOWER iGL_wb50.dat

MODEL
y = mean IDcode

The fixed general mean solution (So1fix)is

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 4 9.4191 mean y

The total estimated breeding value will be in the solani file:

1 1 1 -3.4987
2 1 1 -2.2013
3 1 1 1.0060
4 1 1 3.0177
5 1 0 0.79525
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6 1 0 25158

Note that these values are equal to the sum of the genomic and polygenic solutions
when these effects were included separately in the model.

9.3.9 Example: Hybrid GBLUP model
Chapter 9.2 4 illustrated a hybrid model with markers. An equivalent GBLUP type model
uses genomic relationship matrices instead of markers:

y=1u+ Wfaf +W,.a,, + pre +e

where
* y is vector of observations,
« 1 is vector of ones multiplying the general mean g,

+ W; is incidence matrix for a;, which is vector of female parent additive genetic
effects,

* W,, is incidence matrix for a,,, which is vector of male parent additive genetic
effects,

+ W, is incidence matrix for p., which is vector of non-genetic permanent environ-
ment effects, and

* e is the residual.
The random effects have the following assumptions:
* a; ~ N(0,Gjo?),
* a, ~ N(0,G,,02),
* p. ~ N(0,107),
« e~ N(0,I0?)
where G, and G,,, are the female and male genomic relationship matrices, respectively.

The marker data can be used to make both of the genomic relationship matrices and
invert them. As in the marker effect model, scaling uses the number of markers and
centering of all markers is the same. In our case, the two inverse genomic matrices in
the lower triangle dense matrix format are

» femalesinfile iGI_female.dat):

4 0

11 12 13 14

5.032259

1.161291 5.806452

3.483871 —-.5806450 4.258064
2.903226 2.516129 1.548387 3.290323

*» males infile iGL_male.dat):

4 0

21 22 23 24
6.000000
3.000000 3.750000
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3.000000 .7500001 3.750000
3.000000 2.250000 2.250000 3.750000

The hybrid GBLUP model can use the GBRL.UP command for only one of the ge-
nomic parental effects. Instead, both parental genomic effects are modeled using
the COvFILE command. In the current model, the difference between using the GRL.UP
and COVFILE commands is small. However, it is worth noting that the GBL.UP command
is just one approach for associating a covariance structure for additive genetic effects.
Other approaches include the PEDIGREE command for pedigree-based relationships
and the ssGBLUP command for the single-step GBLUP model, among others.

The CLIM code for this hybrid GBLUP model is

DATAFILE gs_obs_repeat_hybrid.dat

INTEGER id female male mean
REAL vyl y2
MISSING —-99999.

PARFILE CLIM

1 LOWER # female genomic
1.0
0.7 1.0

2 LOWER # male genomic
0.9
0.6 1.1

3 LOWER # PE
0.25
0.10 0.25

4 LOWER # residual
1.00
0.10 1.00

COVFILE 1Gf LOWER iGL_female.dat
COVFILE 1Gm LOWER iGIL_male.dat

RANDOM iGf iGm PE

MODEL
vyl = mean iGf (female) iGm(male) PE (id)
y2 = mean 1Gf (female) iGm(male) PE (id)

The solutions are the same except that no marker effect solutions are estimated, and
that the solutions are in different files due model differences.

The general mean solutions are as before in So1fix:

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 12 9.0649 mean yl
1 2 1 12 6.0634 mean y2

The permanent environment effect solutions are in So1r03 as it is the third random
effect:

1 3 -0.30407 -0.29627
2 3 -0.43184 -0.41146
3 3 0.28980 0.28449
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4 3 0.44610 0.42324

The female parent genomic breeding value solutions are in the So1r01 file:

11 3 -2.9886 -2.9474
12 3 -1.1675 -1.1404
13 3 1.3215 1.3134
14 3 3.5565 3.4893

The male parent genomic breeding value solutions are in the so1r02 file:

21 3 -0.44997 -0.51309
22 3 -1.0035 -1.0901
23 3 0.17669E-01 0.43165E-01
24 3 1.4543 1.5915

9.3.10 Example: Hybrid random regression GBLUP model
Chapters 9.2.4 and 9.3.9 illustrated a hybrid model using the marker effect and the

GBLUP model approaches, respectively. The GBLUP model approch in MiX99 supports
more complex model structures (through commands GRLUP and COVEILE) than those
available for the marker effect models through the REGMATRIX command. For example,
random regression or reaction norm models are supported.

We extend the hybrid GBLUP model presented in the previous chapter. Instead of a
single random effect per individual, assume there are two random effects per individual.
The first is as in that example, while the second is a linear term using a covariate
available in the data file.

The CLIM code for this hybrid random regression GBLUP model is

DATAFILE gs_obs_repeat_hybrid.dat

INTEGER id female male mean
REAL vl y2 x
MISSING —-99999.

PARFILE CLIM

1 LOWER # female genomic
1.0 # trait 1 direct
0.7 1.0 # trait 2 direct
0.5 0.1 1.0 # trait 1 x
0.0 0.1 0.5 1.0 # trait 2 x

2 LOWER # male genomic
0.9 # trait 1 direct
0.6 1.1 # trait 2 direct
0.3 0.05 1.0 # trait 1 x
0.0 0.05 0.4 1.0 # trait 2 x

3 LOWER # PE
0.25
0.10 0.25

4 LOWER # residual
1.00
0.10 1.00

COVFILE iGf LOWER iGL_female.dat
COVFILE 1Gm LOWER iGIL_male.dat

RANDOM iGf iGm PE
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MODEL
yl = mean iGf (1l x | female) iGm(l x | male) PE(id)
y2 = mean 1Gf (1l x | female) iGm(l x | male) PE(id)

Please note the order of values in the covariance matrices for female and male genetic
effects with random regressions, as specified in the PARFTLE command. The values
are given column-wise, including both traits (first trait 1 and then trait 2). For a more
detailed explanation, please see the example of a multi-trait random regression model
in Chapter 6.4.

The general mean solutions in the so1 f1x file are:

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 12 8.9878 mean yl
1 2 1 12 6.0636 mean y2

The permanent environment effect solutions are in So1r03 as it is the third random
effect:

1 3 -0.32448 -0.29645
2 3 -0.45702 -0.41063
3 3 0.29214 0.28629
4 3 0.48936 0.42079

They are similar to the non-random regression model.

The female parent genomic solutions are in the so1r01 file:

11 3 -2.8680 =2.9565 -0.66982 0.54407E-01
12 3 -1.0719 -1.1511 -0.22152 -0.62597E-01
13 3 1.3574 1.3105 0.40094 -0.11906
14 3 3.4951 3.5118 0.87095 -0.11576

Here, columns three and four have the direct genetic effect solutions of traits one and
two, respectively. Columns five and six have the genetic effect solutions associated
with the random covariate x of traits one and two, respectively.

The male parent genomic breeding value solutions are in the so1r02 file:

21 3 -0.44206 -0.51344 -0.28492E-01 0.62189E-01
22 3 -0.95798 -1.0938 0.64986E-02 -0.14200
23 3 0.53781E-01 0.42465E-01 0.14224 -0.13997
24 3 1.4824 1.5956 0.12616 -0.61435E-01

The form of this file follows that for the females.

10 Single-step genomic BLUP

A simple single trait single-step genomic BLUP (ssGBLUP) model is
y =Xb+Z,a, +e

where
» y is the vector of observations,

 the incidence matrices X and Z, relate observations to fixed effects b and random
additive genetic effects a,, respectively,
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» e is the vector of random residuals.

The model is similar to that in Chapter 9.3.8, except that the relationship matrix of the
breeding values a, has both pedigree and genomic information.

The random effects have the following assumptions: a, ~ N(0,Ho?), and e ~ N(0,102)
where H is the combined relationship matrix that integrates both pedigree-based and
genomic relationship matrices. The H matrix is not needed to be given as input to
MiX99. Instead, the inverse H~! matrix is used:

L .. oo
HOA [ G

where
+ A is the full pedigree-based relationship matrix,
+ A, is the pedigree-based relationship matrix part for the genotyped individuals,
* G is the genomic relationship matrix.

There are many approaches available for the H=! matrix. In practice, the standard
ssGBLUP model in CLIM is similar to the use of a purely pedigree-based relationship
matrix model supplemented with the inverse genomic relationship matrix G~!. So, the
user has to provide the full pedigree used to make the computations involving inverses
of A and A,,, and provide G~! matrix in a file.

10.1 Example: standard ssGBLUP
standard ssGBLUP

We illustrate solving a standard ssGBLUP model that requires pre-computing the G*
matrix and providing it in CLIM using the sSGBLUP command. Let the full pedigree
used for the computations of the pedigree-based relationship matrices be in the file
one_step.ped:

ID codey sireo, dams
1 2

O J o U b W DN
N O © O U1 U1 b
W o © O o O W W

Inbreeding coefficients are in file full_one_step.inbr:

ID code; numbers Fi

5 1 0.00000
6 2 0.00000
7 3 0.00000
3 4 0.00000
4 5 0.00000
2 6 0.25000
8 7 0.37500
1 8 0.37500
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where the first column has the original individual ID code number, and the last column
inbreeding coefficient.

It is essential that the genomic and pedigree-based relationship matrices are on the
same scale. A commonly used genomic relationship matrix G is based on VanRaden’s
method 1. In this example, we appy a weighted combination of G and the pedigre-based
A

99:

G, =(1—-w)G+wAy
where w is the residual polygenic proportion. We assume w = 0.2, so that 80% of the
total genetic variation is explained by markers, and 20% by residual polygenic effects
not captured by the markers.

The blended matrix G, = ((1 — w)G + wA,,)~! matrix has to be pre-computed and
provided in a file. The matrix can be in a file either in

* a co-ordinate sparse matrix format (default) or
+ a lower triangle dense matrix format.

Assume the G! matrix has been stored in the lower triangle dense matrix format in
the iGL_w20.dat file:

6 0

123456

2.946921

-2.265682 2.862358

—-.2843413 .4539492 1.718884

1.293539 -.8104094 .7088089E-01 3.264837

.4809364 —-.4315277 -.6975392 .2673285 1.563790

.2329393 -.1191732 -.8711874 -2.032240 -.1566584 2.877456

The ssGBLUP command is used to indicate the standard single-step GBLUP model.
The command has the same options as the GBL.UP command, including:

« MIXED, and
e LOWER.

In this example, the variance components are o2 = 0.5 and ¢ = 1. These are in file
one_step.par:

Random effecty Row, Columns Covariance
1 1 1 polygenic variance
2 1 1 residual variance

The CLIM code is

DATAFILE gs_obs.dat

INTEGER IDcode mean
REAL v

SSGBLUP LOWER iGL_w20.dat

PEDFILE one_step.ped
PEDIGREE IDcode am

107



Command Language Interface for MiX99 (CLIM)

INBRFILE full_one_step.inbr
INBREEDING PEDIGREECODE=1 FINBR=3

PARFILE one_step.par

MODEL
y = mean IDcode

The fixed general mean solution (Sol1fix)is

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 4 9.2143 mean y

Estimated breeding values (solani) are

1 0 1 -2.9860
2 2 1 -1.8368
3 3 1 1.3077
4 1 1 2.6580
5 3 0 0.78904
6 3 0 2.4818
7 0 0 1.6354
8 0 0 -0.26452

An alternative to the SSGBL.UP command is to use the TGFILE command to specify the
inverse genomic relationship matrix. However, this requires giving TA22FILE PEDIGREE
command as well:

IGFILE LOWER iGL_w20.dat
IA22FILE PEDIGREE

Using these commands will lead to exactly the same computations as using the
SSGBLUP command.

Note that if TGFTLE command but no TA22FTILE command is given, it is assumed that
the file specified by TGF1LE has G~ — A_ . Furthermore, the pedigree and inbreeding
coefficient files given to the PEDFILE and INBRF ILE commands, respectively, has to
be the same as used to compute the A matrix in order to have a consistently defined
and correctly computed single-step model.

10.2 Preconditioner in ssGBLUP

The preconditioner is seldom a very good approximation of the coefficient matrix.
In MiX99, (trait-block) diagonal preconditioner is often used (see Chapter 2.3.4). In
single-step, this requires knowing the diagonal elements of H~*! for all individuals. For
non-genotyped individuals, this is easy, as their values the same those in the diagonal
of A~'. However, for genotyped individuals, the diagonal values of G™' — A_| are
needed as well.

When the ssGBLUP command is used, the G~! matrix is provided. However, the
A matrix is not explictly computed, neither by the preprocessor (mix991i) or the
solver (mix99s). Consequently, the pre-processor does not have directly available the
diagonal elements of the A matrix to be used for the preconditioner.

MiX99 has three possible approaches to handle this:
1) Monte Carlo estimation by the preprocessor
The preprocessor can estimate the required diagonal elements using a Monte
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Carlo method. This is the recommended approach, as it is makes the compu-
tation steps simple. The preprocessor stores the diagonal values of A;gl to file
TmpiA22.diag in the directory defined by the TMPDIR command.

2) Precompute diagonal values of Ag—g1
This can be done using a separate program such as calc_diag_iA22. Diagonal
values need to be multiplied by the correct value. When the standard ssGBLUP
model is used, MiX99 expects contributions of the diagonal of the —Ag—g1 matrix
(note the minus sign). For other models, a different multiplier may be required.
These contributions can be stored in a file and accounted for using the THPRECON
command. Each line of the THPRECON file has the ID code of the genotyped
individual and the correction value for the preconditioner. This approach can be
computationally faster when the same diagonals are used in multiple evaluations.

3) Omit correcting the diagonal values
It is possible to omit the contributions of the diagonals of the A;gl matrix by provid-
ing an empty THPRECON file. However, this may negatively affect convergence at
some stage of the PCG iteration.

While the first approach is generally preferred, the second approach may sometimes
be computationally more efficient. For further details, see the THPRECON command.

CLIM file when the second approach is used:

DATAFILE gs_obs.dat

INTEGER IDcode mean

REAL %

MISSING -99999.

DATASORT PEDIGREECODE=IDcode

SSGBLUP LOWER 1GL_w20.dat
IHPRECON minus_diA22.dat

PEDFILE one_step.ped
PEDIGREE IDcode am

INBRFILE full_one_step.inbr
INBREEDING PEDIGREECODE=1 FINBR=3

PARFILE one_step.par

MODEL
y = mean IDcode

The minus_diA22.dat is

1 -2.304
-2.55686
-3.12071

.505

-1.926

-2.018

o U b W N
|
N

where the first column has ID codes of the genotyped individuals and the second
column has their diagonal values in —A_ .
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10.3 Large number of genotyped individuals in single-step

The genomic relationship matrix (G) is a square matrix of size the number of genotyped
individuals. As this matrix increases, both the computational and memory demands
increase quadratically. When the number genotyped individuals becomes large, the
size of the genomic relationship matrix may grow too large to handle efficiently. This
can lead to excessive memory use, as well as long computing times. Some alternative
approaches to address these problems are:

Algorithm for Proven and Young (APY)
APY approximates the G~! matrix by making it sparse in large parts of the
matrix (Misztal et al. (2014)). This reduces computational and memory demands
significantly.

Single-step genomic BLUP with Woodbury identity (ssGTBLUP)
The ssGTBLUP method decomposes the computations of G~! using the Wood-
bury matrix identity (Mantysaari et al. (2017)). This will lead to using a matrix
of size the number of genotyped individuals by the number of markers. Thus,
the computational and memory demands increase linearly by the number of
genotyped individuals.

Single-step genomic ssSNPBLUP (ssSNPBLUP)
The ssSNPBLUP model is an augmented version of the ssGTBLUP model intro-
duced in Liu et al. (2014).

In MiX99, using APY is like using the standard ssGBLUP model with the full G~! but
replacing it with an APY-based inverse matrix. Please see Chapter 9.3.7 where APY
was used for GBLUP. We ask readers to consult the literature on the use of APY as its
goodness of predictions depends on the chosen approximation strategy.

In the ssGTBLUP approach, the genomic relationship matrix is assumed to have the
form: G = Z.BZ/ + E where

1) Z. is the centered marker matrix,
2) B is a diagonal matrix containing marker scaling (and possibly weighting) factors,
3) E is a regularization matrix that is easy to invert.

The use of the Woodbury matrix identity allows expressing the inverse as:
G '=E'-E'Z(ZE'Z,+B ) 'ZE"!
In MiX99, two regularization matrices have been implemented:

1) ssGTeBLUP:

(a) E = €I, where the regularization parameter ¢ is a small number (e.g., 0.01),
(b) B = D, where D is the marker scaling matrix.

2) ssGTABLUP:

(@) E =wAy,
(b) B=(1—-w)D.

where w is the residual polygenic proportion.

The marker scaling matrix D often has the form D = I}, where k = 23" | p;(1 — p;)
and p; is the (base population) allele frequency of marker .
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In both ssGTBLUP models, the inverse matrix G~ can be expressed using a rectangular
matrix T, with dimensions equal to the number of SNP markers by the number of
genotyped individuals:

G'=E'-TT.

where T = L,Z.E~!' and C™! = LcL, = (Z.E"'Z. + B™')~!. Alternatively,
G'=E'-E'ZC'ZE"!

The first expression is the basis of the standard ssGTBLUP approach, and the second
equation defines the component-wise ssGTBLUP approach.

MiX99 supports three alternative ways to define an ssGTBLUP model:
1) Standard ssGTBLUP:

This approach requires precomputing the T matrix into a file. The file is an
argument to the sSSGTBLUP command which has two options:

(@) TEFILE for ssGTeBLUP,
(b) TAFTLE for ssGTABLUP.

2) Basic component-wise ssGTBLUP:
In this approach, two matrices need to be precomputed and provided in files:

(a) zcr1LE command defines the file having the centered marker matrix Z.,
(b) 1crILE command defines the file having the C~! matrix.

For example, for ssGTABLUP:

1
C'=(-ZA'Z.+B ).
w

¢ g9

3) Fully component-wise ssGTBLUP:
In this approach:

(a) IcrILE command defines C~! as in basic component-wise ssGTBLUP,
(b) SNPMATRIX and SNPFILE commands are used to define the marker data
file with centering information.

All three ssGTBLUP approaches require some level of preprocessing before the
mix991 can be executed. One or two matrices need to be precomputed.

The basic component-wise ssGTBLUP approach is computationally less demanding in
the preprocessing than the standard ssGTBLUP approach. Also, its peak RAM is lower
during preprocessing. Furthermore, when the basic component-wise ssGTBLUP is
used, the solver mix99s (or mix99p) can easily compute estimated marker effects to
the so1sNP file, allowing genomic breeding value estimation for the newly genotyped
individuals. However, the basic component-wise ssGTBLUP requires computing and
storing a centered marker matrix (used by zCF ILE) which is as large as the T matrix. In
addition, the C~! matrix (defined by 1CF11LE) is needed. Thus, although its advantages,
the basic component-wise ssGTBLUP may have too large memory requirements in the
solver.
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The fully component-wise ssGTBLUP model is a memory efficient version of the
basic component-wise ssGTBLUP approach. Instead of the centered marker matrix,
the original marker matrix is used. This can be stored efficiently leading to the fully
component-wise ssGTBLUP to use less memory than either the standard or basic
component-wise ssGTBLUP approach, when the number of genotyped individuals
exceeds the number of markers. Details of this method are explained in Chapter 10.4.

All ssGTABLUP models require strict consistency in pedigree information. In particular,
the same pedigree file used to compute the T or C~! matrix must also be provided
via the PEDFILE command. If different pedigrees are used, the computations may be
incorrect, because the A_ ! matrix may be computed inconsistently computed in the
solver computations and for T or C~!. In contrast, ssGTeBLUP models do not use
pedigree information in the computation of T or C~!, and so do not have the same
pedigree consistency requirements.

An example CLIM file to use the standard ssGTeBLUP approach is

DATAFILE gs_obs.dat

INTEGER IDcode mean

REAL %

MISSING —-99999.

DATASORT PEDIGREECODE=IDcode

SSGTBLUP TEFILE TE.bin

PEDFILE one_step.ped
PEDIGREE IDcode am

INBRFILE full_one_step.inbr
INBREEDING PEDIGREECODE=1 FINBR=3

PARFILE one_step.par

MODEL
y = mean IDcode

For the standard ssGTABLUP approach,
SSGTBLUP TAFILE TA.bin

where the TA.bin file has the T 4 matrix. Thus, the TAFTLE option is used instead
of TEFTILE. Note that the SSGTBLUP command does not include explicit parameter
options for ¢ in ssGTeBLUP or w in ssGTABLUP. This is because the T matrix file
already has this information.

The ssGTBLUP command is similar to the sSGBLUP command in that there is an
alternative set of commands. For ssGTeBLUP, it is

TEFILE TE.bin
IA22FILE PEDIGREE

For ssGTABLUP, it is

TAFILE TA.bin
IA22FILE PEDIGREE
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As with ssGBLUP (Chapter 10.1), the A_ matrix is not explicitly computed when the
command "IA22FILE PEDIGREE" has been given. The same applies to ssGTBLUP
models. However, the preconditioner needs diagonal elements of the A ' matrix.
Consequently, by default, the mix991 preprocessor uses a Monte Carlo algorithm to
estimate the diagonal elements of A '. For more information, see Chapter 10.2,

If the automatic computations by the Monte Carlo approach are not desired, precom-
puted diagonal values can be supplied using the THPRECON command (see Chap-
ter 10.2). For the ssGTeBLUP model, the same file as used for ssGBLUP can be
used:

IHPRECON minus_diA22.dat

where each record in the file must contain individual ID code and its negative diagonal
inA_l,ie., —A_ ! Forthe ssGTABLUP model, the file must contain diagonal values
of (1/w — 1)Ag—g1 where w is the residual polygenic proportion. In other words, the

diagonals of A_ ' must be multiplied by (< — 1) instead of —1.

The basic component-wise ssGTBLUP approach differs from the standard ssGTBLUP
approach in that it requires two input files instead of one. An example of commands
required for the basic component-wise ssGTABLUP approach:

SSGTBLUP ZCFILE Zc.bin
ICFILE iC.bin

where Zc .bin contains the centered marker matrix Z. and iC .bin contains the matrix
C™' = (+Z,A,}Z.+B')"'. An example for the basic component-wise ssGTeBLUP
model:

SSGTBLUP ZCFILE Zc.bin
ICFILE GTe iCe.bin

where iCe.bin conains the matrix Co ™' = (1Z.Z. + B~')™",
An example CLIM file to use the basic component-wise ssGTBLUP approach is

DATAFILE gs_obs.dat

INTEGER IDcode mean

REAL v

MISSING -99999.

DATASORT PEDIGREECODE=IDcode

SSGTBLUP ZCFILE Zc.bin
ICFILE iC.bin

PEDFILE one_step.ped
PEDIGREE IDcode am

INBRFILE full_ one_step.inbr
INBREEDING PEDIGREECODE=1 FINBR=3

PARFILE one_step.par

MODEL
y = mean IDcode
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Again, there is an alternative way to give the basic component-wise model which
requires giving the TA22FTLE PEDIGREE command. For ssGTABLUP:

ICFILE iC.bin
ZCFILE Zc.bin
IA22FILE PEDIGREE
and for ssGTeBLUP:
ICFILE GTe iCe.bin
ZCFILE Zc.bin
IA22FILE PEDIGREE

Efficient computation of the basic component-wise ssGTBLUP model is quaranteed by
having the provided matrices in the RAM memory. To enable this, the solver (mix99s)
must use the (default) MEL option. However, when the number of genotyped individuals
becomes large, the RAM requirements can become too large. In such cases, it is better
to use either fully component-wise ssGTBLUP ssSNPBLUP.

The component-wise ssGTBLUP models do not support the inclusion of UPGs in the
preprocessing. Thus, the altered QP H-inverse is typically used. The full QP compu-
tations are supported in the MiX99 solver for the basic component-wise ssGTABLUP.
However, the use of this solver option leads to increased computations. Currently we
recommend using the altered QP H-inverse approach in all single-step models due to
its ease of use and its approach for accounting missing pedigree information without
using genomic information. For more information on the use of UPGs in single-step
models, see Chapter 10.6.

10.4 Fully component-wise single-step GTBLUP model (ssGTBLUP)
In the ssGTBLUP approach described above, both computational and memory de-
mainds increase linearly with the number of genotyped individuals. When the number of

genotyped individuals is large, the files needed by the above approaches can become

very large. The component-wise ssGTBLUP approach can be programmed to use SNP

marker data directly, eliminating the need to store the large centered marker file defined

by zCFILE. However, marker scaling information must still be provided in the file

specified by the TCcFILE command. We call this the fully component-wise ssGTBLUP

approach.

In the basic component-wise ssGTBLUP model, the centered marker matrix is stored
using double precision numbers (8 bytes per genotype), Because genotypes are
integers (0,1,2), the fully component-wise ssGTBLUP can reduce memory use by
storng each genotype using 1 byte, reducing RAM need to 1/8th. Further reduction is
achieved using marker byte-packing, where five genotypes are packed into a byte (see
Table 10.2)).

The fully component-wise ssGTBLUP requires TCFILE. Consequently, the same
preprocessing step to compute this file is needed as described in the previous chapter
for the basic component-wise ssGTBLUP approach. However, because the centered
marker data file is no longer needed, preprocessing has fewer computations and lower
disk memory use. Instead, raw marker genotypes are provided along with centering
information.

The genotype file is specified using the SNPFILE command and its content is defined
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using the SNPMATRIX command. The FIRST and LAST options of SNPMATRIX define
the first and last SNP marker columns, respectively, in SNPFILE. Furthermore, the
FORMAT option can be used to specify the Fortran format of the SNP marker file for
reading. The CENTER option defines marker centering and may require a file specified
by the CENTERFILE command. This file has two columns: the marker number and a
value. The value is either an allele frequency or direct centering value, depending on
the option given to CENTER.

Numbering of the SNP markers requires some care. In CENTERF I LE, markers must
start from one. However, the SNPMATRIX command uses column indices, which
typically start from two. Thus, marker number one in CENTERFILE corresponds to
column two in SNPFILE.

The fully component-wise ssGTBLUP model computes marker effect solutions to the
So1sNP file just like the basic component-wise ssGTBLUP approach.

An example for fully component-wise ssGTABLUP reads space separated (FORMAT=m)
SNP marker data (SNP markers on columns 2 to 7) and centering by allele frequencies
(CENTER=p) in file AF .dat:

DATAFILE gs_obs.dat

INTEGER IDcode mean

REAL y

MISSING —-99999.

DATASORT PEDIGREECODE=IDcode

SNPMATRIX FIRST=2 LAST=7 CENTER=p FORMAT=m
SNPFILE SNP.dat
CENTERFILE AF.dat

ICFILE iC.bin
IA22FILE PEDIGREE

PEDFILE one_step.ped
PEDIGREE IDcode am

INBRFILE full_ one_step.inbr
INBREEDING PEDIGREECODE=1 FINBR=3

PARFILE one_step.par

MODEL
y = mean IDcode

Note that the TCFTLE is used which requires precomputing a matrix. The residual
polygenic proportion is included in this matrix and the CLIM command file cannot
change that value.

Default genotype storage mode is one genotype in a byte. Packing several genotypes
to a byte uses less RAM but can increase computing time. On the other hand, this is
compensated by the reduced memory access time due to the lower memory use of the
marker matrix compared to the centered marker matrix. The genotype storage approach
can be chosen by the USE option in the SNPMATRTIX command. In the example above,
SNP marker byte-packing is taken to use by giving
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SNPMATRIX USE=PACK FIRST=2 LAST=7 CENTER=p FORMAT=m
All the other commands stay the same.

A more realistic example has more markers and no space between the SNP genotypes.
For example,

SNPMATRIX FIRST=2 LAST=52001 CENTER=p FORMAT=’ (110,1x,5200041i1)"
SNPFILE markers.dat

CENTERFILE baseAF.dat

ICFILE iC52.bin

Centering of the marker genotypes is based on allele frequencies given in the file
defined by the CENTERF ILE command. Because this is a component-wise ssGTBLUP
model, the TCFTILE command has to be given.

Note that the fully component-wise ssGTBLUP model available by the SNPMATRIX
command expect that the SNP marker genotypes in the SNPFILE are integer numbers.
Genotype value can be 0, 1, or 2, and no missing marker code is allowed. The RAM
savings in the fully component-wise computations are possible due to making the
marker matrix centering on-the-fly. In practice, only a part or a block of the SNP marker
matrix is used to make the values of the Z. matrix, i.e., only block-wise computations
can be performed. Consequently, the MEL option (assuming the full Z. matrix) is not
allowed in the solver for the fully component-wise models. Instead, use the default MEA
option or define the blocking using the MEB option.

10.5 Single-step marker SNPBLUP model (ssSNPBLUP)
The ssSNPBLUP model introduced by Liu et al. (2014) augments the single-step model
by explicit marker effects. Despite the increased number of unknowns in the mixed
model equations, the computational cost of per PCG iteration is about the same as in
the fully component-wise ssGTBLUP approach (Vandenplas et al. (2023)).

In MiX99, many commands used to define the fully component-wise ssGTBLUP are
needed for the ssSNPBLUP model as well and are described in Chapter 10.4. A
major difference is that no TCFILE command should be given. Instead, marker scaling
information has to be provided, and ssSNPRBLUP command must be given.

The ssSNPBLUP model uses the same commands as the fully component-wise ssGT-
BLUP approach:

* SNPFILE: defines the name of the marker genotype file.

» SNPMATRIX: defines the first and last SNP marker columns used by options
FIRST and LAST, respectively. Scaling of markers must be defined by the SCALE
option. Furthermore, the FORMAT option can be used to define the Fortran format
of the SNP marker file for reading. Centering of the marker information can be
defined by the CENTER option.

* CENTERF ILE: optional marker-specific centering information in a file.

This file can have either allele frequencies or direct values for centering. This file
has two columns: the marker number and the value.

* ssSNPBLUP: defines the regularization type the model and the value of the
regularization parameter.
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The sCALE option determines that ssSNPBLUP approach is use instead of fully compo-

nent-wise ssGTBLUP.

The ssSNPBLUP model is used when the SCALE option is defined in the SNPMATRIX
command and the ssSNPBLUP command is given. No ICFILE command should be
given. However, if the SNPMATRIX command does not have SCALE option, the fully
component-wise ssGTBLUP approach with the TCFILE command is expected.

An example using the ssSNPBLUP model is

DATAFILE gs_obs.dat

INTEGER IDcode mean

REAL y

MISSING —-99999.

DATASORT PEDIGREECODE=IDcode

SNPMATRIX FIRST=2 LAST=7 CENTER=p FORMAT=m SCALE=p
SNPFILE SNP.dat

CENTERFILE AF.dat

ssSNPBLUP GTA 0.20

IA22FILE PEDIGREE

PEDFILE one_step.ped
PEDIGREE IDcode am

INBRFILE full_ one_step.inbr
INBREEDING PEDIGREECODE=1 FINBR=3

PARFILE one_step.par

MODEL
y = mean IDcode

The sssSNPBLUP command allows choosing the regularization type of the model:

GTA This ssSNPBLUP model is equivalent to a ssGTABLUP model having the genomic
relationship matrix G,, = (1—w)Z.B~'Z,+wA ,, where w is the residual polygenic
proportion, Z. is the centered SNP marker matrix, B is the scaling matrix, and
A, is the pedigree-based relationship matrix for the genotyped.

GTe This ssSNPBLUP model is equivalent to a ssGTeBLUP model having the genomic
relationship matrix G, = Z.B~'Z/, + I where ¢ is a small number such as 0.01.

The necessary w and e values are defined by the ssSNPRLUP command. For ex-
ample, ssSNPBLUP GTA 0.2 for an equivalent ssGTABLUP model with w = 0.2 or
ssSNPBLUP GTe 0.01 for an equivalent ssGTeBLUP model with e = 0.01. Thus, the
ssSNPBLUP command is used to define the model type while an equivalent ssGTBLUP
model (ssGTABLUP or ssGTeBLUP) has this information available in the file defined by
the ICFILE command.

In ssSNPBLUP, the scaling B matrix information has to be defined using the SCALE
option of the SNPMATRIX command. The scaling matrix has the form B = -1 for
GTA and B = 11 for GTe where £ is the scaling constant. The scaling constant k can
be either given as a value or chosen from the following options:
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p k=2),p(1—p;) where p, is the allele frequency of marker i as defined in the
file of CENTERFILE.

m k equals the number of markers m.
m2 k equals half of the number of markers m, i.e., m/2.

pm k equals 2mpyar(l — paar) Where pyar is the average MAF of the markers
computed using the CENTERF ILE information.

no k =1, i.e., no scaling.
dA k computed such that tr(Z.BZ.) = tr(A,,).
one k computed such that tr(Z.BZ.)/n equals one.

The sssSNPBLUP command is used to set the residual polygenic proportion in this
example to 10% and use the scaling constant £ = 2> . p;(1 — p;):

SNPMATRIX FIRST=2 LAST=52001 CENTER=p FORMAT=’ (i10,1x,52000il)’ SCALE=p
SNPFILE markers.dat

CENTERFILE baseAF.dat

ssSNPBLUP GTA 0.10

A component-wise ssSNPBLUP model equivalent to a ssGTeBLUP model has com-
mands

SNPMATRIX FIRST=2 LAST=52001 CENTER=p FORMAT=’ (i10,1x,52000il)" SCALE=p
SNPFILE markers.dat

CENTERFILE baseAF.dat

ssSNPBLUP GTe 0.01

The ssSNPBLUP approach computes estimated solutions of the marker effects to file
Sol1sNP just like the component-wise ssGTBLUP approaches.

10.5.1 Second-level preconditioner in ssSNPBLUP
The ssSNPBLUP model uses less RAM than the fully component-wise ssGTBLUP
model because the latter reads the C~! matrix defined by the 1cF11LE to RAM. How-
ever, the convergence of the ssSNPBLUP model is typically poorer if no second-level
preconditioner is used for the marker effects. Thus, it is advised that a second-level
preconditioner is defined for the solver via the sp option.

An example of defining the second-level preconditioner to have value 100 on the
command line:

mix99s -sp 100 -MEA -s -cr le-6 -n 5000

where —s requests solution files, —cr 1le-6 defines the Cr convergence statistic limit
of 107%, and maximum number of iterations to be 5000.

The same instructions in a command file for mix99s:

# RAM: RAM options
H MEA sp 100

# STOP:

5000 1.0e-6 r £

118



Command Language Interface for MiX99 (CLIM)

10.5.2 Marker-specific variances or weights in ssSNPBLUP

Marker-specific variances in the ssSNPBLUP model can be specified using command
SNPPARFILE. The file format for the variances has the same structure as for heteroge-
neous variances in the REGMATRIX command.

In multi-trait models, this approach allows providing marker-specific and trait-specific
(co)variances. For example, consider a two-trait model, extending the previous ssS-
NPBLUP model by including an additional trait. The CLIM commands can include
marker-specific variance matrices:

DATAFILE gs_obs_2tr.dat

INTEGER IDcode mean

REAL vyl y2

MISSING -99999.

DATASORT PEDIGREECODE=IDcode

SNPMATRIX FIRST=2 LAST=7 CENTER=p FORMAT=m SCALE=p
SNPFILE SNP.dat

CENTERFILE AF.dat

ssSNPBLUP GTA 0.20

SNPPARFILE gs_gen_heter.par

IA22FILE PEDIGREE

PEDFILE one_step.ped
PEDIGREE IDcode am

INBRFILE full _one_step.inbr
INBREEDING PEDIGREECODE=1 FINBR=3

PARFILE CLIM
1 LOWER

0.5

0.5 1.0
2 LOWER

1.0

0.0 1.5

MODEL
yl = mean IDcode
y2 = mean IDcode

The marker variance file for this example can be:
Marker number Row Column Covariance

1 1 1 0.50 marker 1, trait 1 variance
1 2 1 0.50 marker 1, covariance
1 2 2 1.00 marker 1, trait 2 variance
2 1 1 0.02 marker 2, trait 1 variance
2 2 1 0.00 marker 2, covariance
2 2 2 0.30 marker 2, trait 2 variance
3 1 1 0.70 marker 3, trait 1 variance
3 2 1 0.00 marker 3, covariance
3 2 2 0.10 marker 3, trait 2 variance
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4 1 1 0.40 marker 4, trait 1 variance
4 2 1 0.40 marker 4, covariance
4 2 2 0.80 marker 4, trait 2 variance
5 1 1 0.01 marker 5, trait 1 variance
5 2 1 0.00 marker 5, covariance
5 2 2 0.02 marker 5, trait 2 variance
6 1 1 0.60 marker 6, trait 1 variance
6 2 1 0.60 marker 6, covariance
6 1 1 20 marker 6, trait 2 variance

Sometimes only marker-specific variances have been estimated but no correlations
between traits by marker. These variance can be transformed into weights by normaliz-
ing them to have an average value of one. These marker-specific weights by trait can
be provided to the ssSNPBLUP model. In this approach, it is assumed that the trait
correlations are the same as those defined in the PARFILE for the additive genetic
effect. CLIM commands are then:

SNPMATRIX FIRST=2 LAST=7 CENTER=p FORMAT=m SCALE=p DWEIGHT=T
SNPFILE SNP.dat

CENTERFILE AF.dat

ssSNPBLUP GTA 0.20

WEIGHTFILE weights.dat

Note the use of the DWEIGHT option. When this option has "' T’, the WEIGHTFILE
is expected to have marker weights for each trait in a separate column. In our small
example, the marker weight file can be:

Marker number trait 1 weight trait 2 weight

1 0.50 1.00 marker 1
2 0.02 0.30 marker 2
3 0.70 0.10 marker 3
4 0.40 0.80 marker 4
5 0.01 0.02 marker 5
6 0.60 1.20 marker 6

Note that the marker weights in this file do not need to have an average of one per trait.
The preprocessor mix 991 automatically scales these weights such that their average
is one.

A further simplification is possible when the marker-specific variances are not trait-
specific. Thus, the same weight is used across traits but the weights can differ by
marker. Then the CLIM commands can be:

SNPMATRIX FIRST=2 LAST=7 CENTER=p FORMAT=m SCALE=p DWEIGHT=M
SNPFILE SNP.dat

CENTERFILE AF.dat

ssSNPBLUP GTA 0.20

WEIGHTFILE weights_M.dat

Now there is only one column of marker weights in WEIGHTF ILE. The marker weight
file can be:
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Marker number weight

0.02 marker5
0.80 marker6

1 0.70 marker 1
2 0.15 marker2
3 0.40 marker 3
4 0.60 marker 4
5
6

For further explanation of marker-specific (co)variances or weights in ssSSNPBLUP
model, please see Strandén and Jenko (2024) where some convergence properties
are explained.

10.6 Unknown parent groups in a single-step model

Unknown parent groups (UPGs) can be used to replace missing parents in the pedigree,
as described for pedigree-based models (Chapter 3.3.2). Then, the PEDIGREE com-
mand has am+p to include UPGs in the pedigree. When applying single-step models,
there are two commonly used approaches for including UPGs:

 Full QP transformed H-inverse (Matilainen et al. (2018)).
+ Altered QP transformed H-inverse (Masuda et al. (2021)).

The full QP approach uses both the pedigree-based and genomic relationship ma-
trices for the UPG equations. In contrast, the altered QP approach uses only the
pedigree-based relationship matrices for the UPG equations. In MiX99, all single-step
models support the altered QP approach, which is the recommended method due to
its simplicity and lower bias than the full QP approach (Belay et al. (2022), Himmelbauer
et al. (2024)).

The full QP can be used with the standard ssGBLUP and ssGTBLUP models, be-
cause the files for the SSGBLUP, TAFILE or TEFILE commands can include the UPG
information. These files allow UPG to be augmented:

» standard ssGBLUP
In the hginv program, the *-QP’ option augments G~1 with UPGs.
« ssGTBLUP

In the T48eig_make, the -groups’ option augments the T matrix with UPGs.

However, the component-wise single-step models cannot include UPGs in the external
genomic files. The basic component-wise ssGTABLUP model supports the full QP
model via the —£QP option in mix99s, but with an increased computational cost. In
MiX99, the fully component-wise ssGTBLUP and ssSNPBLUP models allow only the
use of the altered QP H-inverse approach.

Differences between the altered and the full QP transformed H-inverse approaches are
illustrated below. Consider the linear mixed model

y = Xb+ WQg + Wa +e

where the incidence matrices X and W are used to indicate the approriate fixed effects
(b and Qg) and random additive genetic values (a) to the observation vector y, and e
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has the residual. The Q matrix has gene proportions for each unknown parent group
per individual according to the pedigree information. Assume: Var(a) = Ho? and
Var(e) = R where o2 is the genetic variance and the R matrix includes the residual
variance. The mixed model equations for this model is

X'R™!'X X'R'WQ X'R™'W b X'Rly
Qlw/R—lx QlwlR—le QlwlR—lw g — QlwlR—ly
WR X WRI'WQ WR'W+H 10?2 a W'R™ly

The estimated breeding values are
u=Qg+a
After the QP transformation of the above mixed model equations, the estimated breeding

values u are computed directly without the need for a post-processing step to add the
group effect estimates to the estimated additive genetic values.

The full QP approach includes both pedigree and genomic information in the UPG
equations. The mixed model equations are:

X'R™'X 0 X'R™'W b X'Rly
0 QH 'Qo.” —QH '0,? g | = 0
WR'X —-H'Qo;2 WR'W +H 5?2 a WR 'y
0 0
-1 __ -1
where H = A~ + { 0 G‘l—A;gl }

In the altered QP approach (Masuda et al. (2021)), UPGs are include in the pedigree
but not in the external genomic file (G~! or T etc.). In practice, UPG effect equations
use the pedigree-based relationship matrices but not the genomic relationship matrix.
The mixed model equations with altered QP H-inverse for the above model are

X'R1X 0 X'R'W b X'Rly
0  QH,'Qo” -QH's,” g | = 0
WR'X -H;'Qo;2 WR'W +H 10,2 a W'R™y
where H' = A~ + [ g —X—l } Note that the original H™! is still used for the
99

breeding values but elsewhere in the equations it has been replaced by H ;.

10.7 Metafounders

Metafounders (MF) can be used instead of unknown parent groups in any model having
pedigree-based relationship matrix (Legarra et al. (2015)). However, it is mostly used in
single-step models as it allows alligning the pedigree-based relationship matrix with the
genomic relationship matrix. In a MF model, MF are used in place of missing parents in
the pedigree file, and included in the pedigree as individuals. A covariance matrix of
MF, denoted by T, has to be estimated before using MFs in a model.

In MiX99, there are two practical differences in the metafounders compared to unknown
parent groups:

1) The I'~! matrix

MiX99 requires the inverse of the T" matrix to be provided in co-ordinate sparse
matrix format. This can be done using the following command:

122



Command Language Interface for MiX99 (CLIM)

IGAMMAFILE MIXED iGamma.dat
where iGamma . dat has the I'"! matrix.
2) Inbreeding coefficients

In a MF model, inbreeding coefficients must be computed differently. In particular,
the computations use the T matrix. The inbreeding coefficients can be computed
using the RelaX2 program. The inbreeding coefficients of MFs (negative values)
are included in the file having the inbreeding coefficients of all individuals.

MiX99 requires that the metafounders must be positive integer numbers just like any
individual ID code in the pedigree, but unlike unknown parent groups. These MF
numbers are used as position values in the file defined by TGAMMAF ILE. Furthermore,
each MF must have a record in the pedigree file with both parents unknown (coded as
zero), and in the inbreeding coefficients file. This quarantees compatibility in processing
the pedigree information. Note that an individual (not a MF) in a pedigree file is not
allowed to have any missing parents when MF are present in the pedigree. All other
model instructions and commands in MiX99 remain unchanged except the inclusion of
the I'"! matrix using the TGAMMAFILE command.

10.8 Summary of single-step models
MiX99 supports many equivalent single-step models. (see Table 10.2). In these models,
external files differ in numbers and content.

+ Standard ssGBLUP model needs only one external file containing the inverse of
the genomic relationship matrix.

 Standard ssGTBLUP models use one external file containing the T matrix.

+ Basic Component-wise ssGTBLUP divides the information in the T matrix into
two files.

 Fully Component-wise ssGTBLUP need multiple external files that include geno-
type, marker centering and scaling information.

» ssSNPBLUP model requires genotype, marker centering and scaling information.

In general, no single-step model is universally optimal. Their performance depends on
factors such as the number of genotyped individuals, the number of markers, variance
component values, and data structure. These affect computing time, convergence
behaviour and memory requirements, both in the preprocessing and solving steps.

RAM memory use vary significantly across different single-step models (see the RAM
column in Table 10.2). Consider a data having 200,000 (n = 200, 000) or 1 million geno-
typed individuals (n = 1,000, 000) and 50,000 SNP markers (m = 50,000). Estimated
minimum RAM use due to genomic information is (1 million genotyped in parenthesis):

» Standard ssGBLUP: ~ 320 GB (8 TB)
» Standard ssGTBLUP: ~ 80 GB (400 GB)
» Basic component-wise ssGTBLUP: ~ 100 GB (420 GB)
* Fully component-wise ssGTBLUP:  ~30GB (70 GB)

with byte-packed SNPs: ~22GB (30 GB)
» ssSNPBLUP: ~10GB (50 GB)

with byte-packed SNPs: ~2GB (10 GB)
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Table 10.2: RAM requirements and equation for the inverse genomic relationship
matrix for various single-step approaches.

Single-step model cll zB G- formulal® RAMI
Standard ssGBLUP - - G! 8n?
Standard ssGTABLUP N - LA -T, T, Snm
Standard ssGTeBLUP N - II-T.T., Snm
Basic component-wise ssGTABLUP Y N 1A LA 7, 8m(n+m)
xC,'Z. LA ]
Basic component-wise ssGTeBLUP Y N  1I-1Z.C]'Z/: 8m(n+m)
Fully component-wise ssGTABLUP Y Y 1A '—~A 'Z, nm+8m’
xC,'ZLLA ! or tnm + 8m®
Fully component-wise ssGTeBLUP Y Y 1I-1Z C 'Z!I  nm+ 8m?
or tnm + 8m?
ssSNPBLUP of ssGTABLUP Y Y nm or %nm
ssSNPBLUP of ssGTeBLUP Y Y nm or znm

[1] = component-wise computations (Yes/No),

[2] = marker matrix packing available (Yes/No),

[3] = where w is the residual polygenic proportion, and ¢ is a small number (e.g., 0.01),

[4] = approximate memory use in bytes due to the genomic model data, n = number of the
genotyped, m = number of the SNP markers.

These figures are theoretical estimates based on file sizes used in single-step analysis.
Actual RAM use increase depending on the number of unknowns, pedigree complexity,
and other data specific factors. When the number of genotyped individuals is smaller,
differences in RAM use between models diminish. In particular, if the number of
genotyped individuals is less than the number of SNP markers, the standard ssGBLUP
model uses less RAM than any ssGTBLUP approach. The ssSNPBLUP model may
still use less RAM than the standard ssGBLUP model when marker matrix byte-packing
is used.

Number of floating-point operations consumed in the computations of genomic data in
single-step methods mostly depends on the number of genotyped individuals (n) and
the number of markers (m). For standard ssGBLUP, the computational complexity is
about O(n?). For the standard ssGTBLUP, it is O(2nm) operations. For the component-
wise ssGTBLUP and ssSNPBLUP models, it is O(2nm + m?). When the number
of genotyped individuals is large, the component-wise ssGTBLUP and ssSNPBLUP
approaches have about the same number of floating point operations within each PCG
iteration. Furthermore, because the fully component-wise approaches use less RAM
than the standard approaches, memory access and computing times are faster in the
fully component-wise than in the standard single-step approaches, when the number of
genotyped is large. However, there are differences between the fully component-wise
approaches due to the amount of preprocessing needed and convergence of PCG. In
general, ssGTBLUP requires more preprocessing than ssSNPBLUP which has often
a slower convergence. Neverthelss, for large genotyped data, ssSNPBLUP model is
often computationally the most efficient (Vandenplas et al. (2023)).

124



Command Language Interface for MiX99 (CLIM)

The practical use of single-step models differ when performing multiple evaluations:

» Standard ssGBLUP allows the reuse of the precomputed inverse genomic rela-
tionship matrix.

» ssGTeBLUP is simularly robust allowing the reuse of the same T. matrix provided
by the TEF TLE command.

» ssGTABLUP model requires consistent pedigree information across evaluation
runs when the same precomputed T, (via TAFTILE) or C~! (via ICFILE) matrix
is used. In other words, the solver's computation of the iAg—gl matrix times vector
products must align with how the T 4 or C~! matrix has been computed. Currently,
the preprocessor mix991i does not verify that the provided pedigree is the same
as used in making T, or C~L.

» ssSNPBLUP has no preprocessing needs to genomic information making it a
robust choice for multiple evaluations.

11 Special topics

11.1 Trait groups for single trait analysis

11.1.1  Example: Multiple single trait analysis

It is common that several single trait analyses use the same pedigree and data file
but observations are on different columns. Still, a multi-trait model is not used due to
unknown variance components between the traits. Thus, although the data can be
presented as for a multi-trait model, all residual and genetic covariance values between
the traits are zero. This can be analyzed as a multi-trait model by MiX99 . However, this
can be inefficient because the data file may have many missing observations, and the
traits have different effects.

Trait groups can be used to make the analysis more efficient. Now, the data is given
similarly to the repeatability model. However, instead of a repeatability model, there is a
trait group indicator to indicate which model is used. In the example model, the trait
group has observations from one trait.

We consider again the multi-trait model example with different effects by trait in Chap-
ter7.2.1). The model is

traitl = herd X year +a-+e
trait2 = pu +a+e

However, now the interest is in analyzing these two traits as separate independent
evaluations in the same MiX99 solver run. The multi-trait model way would be to do as
in Chapter 7.2.1 but with a parameter file where all covariance values are zero.

The trait group way is to make the data to be similar to the repeatability data (Chap-
ter 6.2.1) but with an additional column to indicate a trait or a trait group. The data file
(example_tr_group.dat)is

125



Command Language Interface for MiX99 (CLIM)

ID code; sireo herd years ones, traits trait12;

4 1 11 1 1 90
4 1 21 1 2 200
6 3 11 1 1 110
6 3 21 1 2 190
8 5 12 1 1 120
8 5 22 1 2 140
9 5 12 1 1 130
9 5 22 1 2 120
10 7 12 1 1 120
10 7 22 1 2 130

The parameter file (nt_single.var) is the same as for the multi-trait model analysis
described above:

Random effect; Row, Columns Covariance;
1 1 1 0

.U

.5

1 2 2
2 1 1 /.0
2 2 2

NN W

-7 N
/U

Column trait is used to indicate the model of the trait. It is referenced by the trait
group number in parenthesis on the model line. Command TRATITGROUP is needed to
indicate which column is the trait group column in the data file. The CLIM file would be

DATAFILE example_tr group.dat

INTEGER IDcode sire herdXyear ones trait
REAL tr

TRAITGROUP trait

PEDFILE data/my.ped
PEDIGREE IDcode am

PARFILE mt_single.var

MODEL
tr(l) = - herdXyear IDcode
tr(2) = ones - IDcode

Fixed effect solutions (So1fix) are

Fact. Trt Level N-Obs Solution Factor Trait
1 2 1 5 160.73 ones tr
2 1 11 2 99.538 herdXyea tr
2 1 12 3 122.69 herdXyea tr

Breeding value estimates in the solani file are

ID code N-Desc N-Obs traitl trait2
1 2 0 —.29831E-05 0.29868E-05
2 2 0 —.29831E-05 0.29868E-05
3 2 0 0.92308 -3.2188
4 2 2 -.92308 3.2188
5 3 0 -.12098E-04 -5.8818
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6 3 2 1.8462 —.55584
7 1 0 0.65422 -5.0727
8 1 2 0.64449E-01 -7.4451
9 0 2 2.0506 -8.9024
10 0 2 —-.17839 -9.9667

Solutions can be compared with those for the trait1 single trait evaluation in Chap-
ter 6.1. Solutions differ slightly. The reason is that the multi-trait model analysis usually
makes more iterations. For example, in the example above, the multi-trait model needed
18 PCG iterations but the single trait analysis converged in 12 iterations. There are
12 unknowns in the single trait model, and, in theory, only 12 iterations are needed.
However, the multi-trait model has 24 unknowns, although in two separate blocks with
12 unknowns. The PCG method tries to solve the two separate systems at the same
time. Solving and convergence in the separate blocks are compromised.

11.1.2 Example: MACE or Sire model with weights and trait groups
We consider a multi-trait sire model where yields of daughters in different countries are

considered different traits. This is the MACE example described in Schaeffer (1994).
The model is

Y1 = Mt gt+site

Y2 = W2+ g2+ S2t €2
where subscript is for countries 1 and 2, i is country genetic base, y is bull’s daughter
yield deviation (DYD), g is genetic group effect of unknown parents, s is sire transmitting
ability by country, and e is residual.

The sire genetic effects and the residuals have the following assumptions:

E(s)=0 Var(s)=Gy® A
E(e) =0 Var(e) =R

These are like the standard multi-trait model assumptions. However, in the MACE
model, the residual covariance matrix R is diagonal, i.e., residual correlations are zero
and vary by sire. The residual covariance matrix for sire i is

dl O' 0 :|

Ri:{ 0" dyo?

1 €9

where d equals one over the number of daughters in a bull’s DYD, and 02 is the residual
variance for country j. The d; values in the residual covariance matrix can be considered
as weights. Weights can be defined for each trait separately by option weight after
the model line. In Schaeffer (1994), the genetic covariance matrix is

100 20
GO—{ 20 5}

The residual variances are o7, = 1000, and o2, = 80.

A trait group has one or more traits that can be observed together from an individual
but cannot be observed with any trait belonging to another trait group. The residual
correlation between trait groups is zero. This definition of trait group matches with the
MACE model where a country is a trait group. In practice, observation belongs to a trait
group specified by an integer number column. The appropriate trait group number is
given in parenthesis after the observation name. For example, trait protein in trait
group 1 isprotein (1), butin group 2, protein (2).

The parameter file MACE . var is
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Table 11.1: The pedigree and data files for the MACE model example.

pedigree file MACE.ped data file MACE.dat
Table 2 in Schaeffer (1994) Table 1 in Schaeffer (1994)
bull; sire, MGS's MGD?4 | bull; country, protein; weight?,
1 6 7 =5 1 1 56 10
2 8 9 =5 1 -23 20
3 10 8 =) 3 1 8 50
4 10 11 -6 1 2 9 100
5 2 6 -6 4 2 3 40
6 -1 =2 -6 5 2 -11 20
7 -1 =2 -6
8 -1 =2 -6
9 -3 —4 -6
10 -3 —dl -6
11 -3 -4 -6
'maternal grandsire
2maternal grandam
3daughter yield deviation (DYD)
Random effect;y Row, Columns Covariance; Variance
1 1 1 100 genetic
1 2 1 20 genetic
1 2 2 5 genetic
2 1 1 1000 residual
2 2 2 80 residual
TITLE MACE, L.Schaeffer (1994)
DATAFILE MACE.dat
INTEGER bull country
REAL protein weight
TRAITGROUP country
PEDFILE MACE .ped
PEDIGREE bull smt+p 1.0 # sm=sire model
PARFILE MACE.var
MISSING  -8192.0
MODEL
protein(l) = country bull ! WEIGHT=weight
protein(2) = country bull ! WEIGHT=weight
Estimates of the country means (so1fix) are
Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 3 10.497 country protein
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1 2 2 3 1.2141 country protein

Breeding value estimates (Solani) by country are

Country
Bull N-Desc N-Obs 1 2

1 0 2 31.132 7.0211

2 1 1 -26.538 -5.9504

3 0 1 -2.4056 —-.47722

4 0 1 4.3014 1.1245

5 0 1 -29.221 -7.0674

6 2 0 10.936 2.3169

7 1 0 8.9970 2.0117

8 2 0 -12.881 -2.9245

9 1 0 -8.3029 -1.8438
10 2 0 1.4727 0.43745
11 1 0 0.46456E-01 0.69527E-01
-4 3 0 —.49058 -.76316E-01
=3 3 0 —-.98117 -.15263
=2 3 0 1.2948 0.27736
=1 3 0 2.5895 0.55472
=3 3 0 1.5631 0.39077
-6 8 0 -3.9756 -.99390

11.2 Deregression

Deregression in MiX99 is based on Jairath et al. (1998) and Schaeffer (2001). Cal-
culation of deregressed proofs means solving a non-linear system of equations. The
system of equations looks the same as regular mixed model equations. However, it is
assumed that solutions for some individuals (for which deregressed proofs are needed)
are known but solutions of their ancestors, unknown parent groups, and the general
mean in the model are unknown. In addition, the deregressed proofs are unknown. In
the mixed model equations, the deregressed proofs are in the right-hand side of the
equation.

In MiX99 (or mix99s), the non-linear deregression problem is solved by a two-step
iterative process:

1) solve ancestral and unknown parent group unknowns given the current solution
for the general mean estimate and the known proofs.

2) calculate a new estimate for the general mean.

In practice, the first step means solving mixed model equations which is the core work
done in MiX99 . The model to solve ancestral and unknown parent groups has only
one fixed effect: general mean. Another important aspect of a deregression model is
that the unknown parent groups must be random.

Many methods can be used in solving non-linear systems. MiX99 has the following
methods

» Broyden
« Secant
« Gauss-Seidel

» Bisection
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The default method is the Broyden method which is often the fastest and most reliable of
the implemented methods. Secant method, however, can be better when solving many
single-trait models. Note that all the methods should lead to the same deregressed
values, but default convergence criterion may terminate the iteration prematurely.

Deregression using mix99s needs to be specifically requested. A directive file for the
program is convenient to make as was described in Chapter 4. Let the directive file
(dereg.slv)be

H # RAM: Demand: H=high
# STOP:
# Max.no.iter., Tolerance, Criterion, Force, Max.no.iter. Non-linear
5000 1.0e-3 D F 1000

N # RESID: Calculate residuals? (Y/N)
R b # VALID: Model validation: R=deregression
# b= Broyden method
# s= Secant method
# i= bisection
# n= Gauss—Seidel
N # VAROPT: Variance options VCE, PEV, HV? No
Y # SOLTYP: Solution file options? Yes

Solving a deregression model has some important differences from the regular breeding
value estimation. Deregression is requested (letter 'R’) with a Broyden method (letter 'b’).
In addition, an additional number of 1000 is given on the line for the maximum number of
iterations and the convergence criterion. The additional number 1000 is the maximum
number of iterations for the non-linear solving method, which is the Broyden method
in this example. Solving a deregression model is a non-linear problem. Consequently,
two iterative methods are used: PCG iteration to solve a linear problem, and the
Broyden method for the non-linear problem. The Broyden method may sometimes fail
to converge or is very slow to converge. Then, another method (e.g. secant method)
can be used, or the problem needs reformulation (e.g. new definition of unknown
parent groups, or different random coefficient value). When deregression is done for
uncorrelated traits having different amounts of information, computations may be slower
than by single-trait deregression because some trait are much slower to converge than
others.

11.2.1 Example: Single trait deregression
The earlier pedigree for the animal and sire model examples is used. However, it is
modified for deregression purposes. The sire model pedigree (sm_dereqg.ped) is

bully sire, maternal maternal grand
grand sires dam groupy
1 -2 =2 -10
3 1 =2 -10
5 3 1 -11
7 5 3 -11

There is a fourth column for the maternal grand dam group. For animal model, this
pedigree (am_dereg.ped) is
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individual; sireo dams;

1 -2 11
3 1 2
5 3 4
7 5 6
2 -2 —-10
4 1 -11
6 3 -11
11 -2 —-10

The data is (dereg.dat)

sire; ones, proof; EDC,
1 1 -.35736 50
3 1 0.40621 100
5 1 0.20334 80
7 1 0.24076E-01 20

The variance components file (SM. var) is the same as before

Random effect; Row, Columns Variance

1 1 1
2 1 1

Sire model The deregression model is very simple: only the general mean and the
sire effect. It is important to use random unknown parent groups. The CLIM code for
deregression (sm_dereg.clm)is

DATAFILE dereg.dat

INTEGER sire ones
REAL ebv EDC

PEDFILE smgs .ped
PEDIGREE sire sm+p 1.0

PARFILE SM.var

MODEL
ebv = ones sire ! WEIGHT=EDC

Calculating deregressed proofs (nix99s < dereg.slv) will give a solution for the
general mean (Solf1ix)

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 4 0.18958E-01 ones ebv

and the deregressed proofs (Solani):

sire N-Desc N-Obs deregressed proof

1 2 1 -.54488
3 2 1 0.49919
5 1 1 0.24384
7 0 1 -.13403
-11 2 0 0.0000
-10 2 0 0.0000
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-2 3 0 0.0000

Solutions for the unknown parent groups (negative id code) can be ignored because
these solutions have been set to zero by MiX99 . In general, deregressed proofs are
those in the solani file that have an observation, i.e., N-Obs is one.

Animal model The CLIM code for the individual animal model is very similar to the
sire model case above:

DATAFILE dereg.dat

INTEGER IDcode ones
REAL ebv EDC

PEDFILE am_dereg.ped
PEDIGREE IDcode amtp 1.0

PARFILE SM.var

MODEL
ebv = ones IDcode ! WEIGHT=EDC

General mean solution (solfix) is the same as before. Solutions are the same

(Solani):
ID code N-Desc N-Obs deregressed proof

1 2 1 -.54488

3 2 1 0.49919

5 1 1 0.24384

7 0 1 -.13403

2 1 0 0.0000

4 1 0 0.0000

6 1 0 0.0000

11 1 0 0.0000

=11 2 0 0.0000

=10 2 0 0.0000

=2 3 0 0.0000

Naturally, there are now more solutions because the pedigree had more individuals. As
before, only solutions with observations (N-0Obs equal to one) are relevant.

11.2.2 Example: Multiple trait deregression

Multi-trait deregression is done the same way as single-trait deregression. We illustrate
multi-trait deregression by the example given by Schaeffer (2001) where a detailed
explanation can be found. The example is on multi-trait sire model deregression for
international bull evaluation. We consider only the example data for country A. Country
B proceeds similarly.

Sire model pedigree (sch_sm.ped) is

bully sire, maternal maternal grand
grand sires dam groupy
1 =22 -23 -24
2 =22 -23 -24
3 =22 -23 -24
4 =22 -23 -24
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5 =22
6 —25
7 =25
8 —25
9 =25
10 —25
11 —-25
12 1
13 3
14 3
15 6
16 6
17 3
18 3
19 3
20 11
21 11
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—23
—26
—26
—26
—26
—26
—26

=
W 0 O W O J DD U s DN

—24
=27
=27
—27
=27
=27
=27
—28
—28
—28
—28
—29
=29
—29
—29
-29
—29

As before, there is a fourth column for the maternal grand dam group. The data
(sch_cntry_A.dat) has three lactations:

onesy sireo Progeny;

Lactation 2 Lactation 3
EBV, Progeny; EBV, Progenys EBVjg

=

R N S N = T = T = T = S

12
12
12
13
13
13
14
14
14
15
15
15
16
16
16

Lactation 1
126 23
43 23
36 23
18 36
5 36
6 36
55 -14
21 -14
17 -14
17 48
7 48
5 48
120 30
44 30
39 30

0
43
36

0

44
39

—999 0 —999
34 0 —999
34 36 38

=999 0 —999
21 0 —999
21 6 17

=999 0 =999

—26 0 —999
—26 17 —49

—999 0 —999
66 0 =999
66 5 59

—999 0 —999
27 0 =999
27 39 3

The data has been constructed such that the number of progeny in the third lactation
was observed also for the first and second lactation. Consequently, the number of
progeny is the same in all lactations when the third lactation is observed. Similarly, the
number of progeny observed for the second lactation was assumed to be observed for
the first lactation. This data structure is described in Schaeffer (2001).

The variance components file (sch_cntry_A.var)is

Random effect,

Row, Columns Variance

1

N R R e e

1

W NN e e

1

R w w N w N

Lact. 1 genetic
Lact. 1,2 genetic
Lact. 1,3 genetic
Lact. 2 genetic
Lact. 2,3 genetic
Lact. 3 genetic
Lact. 1 residual
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Lact. 1,2 residual
Lact. 1,3 residual
Lact. 2 residual
Lact. 2,3 residual
Lact. 3 residual

2
2
2
2

w DN P
w w N w N

2

As for the single-trait model, the model for deregression is very simple: only the general
mean and the sire effect. It is important to use random unknown parent groups. The
CLIM code for deregression (sch_sm.clm) is

TITLE Multiple trait model
DATAFILE sch_cntry_ A 2.dat # Data file
INTEGER ones sire # Integer column names
REAL w_1l el w2e?2 w3 e 3
DATASORT PEDIGREECODE=sire
MISSING =999
PEDFILE sch_sm.ped
PEDIGREE sire smt+p 1.0
PARFILE sch_cntry A.var
MODEL
e_1l = ones sire ! weight=w_1
e_2 = ones sire ! weight=w_2
e_3 = ones sire ! weight=w_3

Calculating deregressed proofs (mix99s < dereg.slv) will give a solution for each

general mean (Solf1ix)

Fact. Trt Level N-Obs Solution Factor Trait
1 1 1 15 25.011 mean e_1
1 2 1 10 24.971 mean e_2
1 3 1 5 13.586 mean e_3

and the deregressed proofs (Solani):

S

Solutions were printed above for only those individuals that have observations, i.e.,

ire N-Desc

N-Obs deregressed proof

12 0 3 22.510 34.257 45.390
13 0 3 45.149 9.6328 38.644
14 0 3 -17.035 -29.146 -75.258
15 0 3 50.363 85.822 118.94
16 0 3 30.240 26.829 -3.4327

N-Obs more than zero. All other solutions have been set to zero by MiX99 .
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11.3 Estimation of variance components

For prediction of breeding values, variance components need to be known. The Monte
Carlo (MC) Expectation Maximization (EM) Restricted Maximum Likelihood (REML) (MC
EM REML) algorithm has been implemented in the mix99s solver for the estimation of
variance components (Matilainen et al., 2012).

The Monte Carlo algorithm uses a resampling approach to estimate prediction error
variances (PEV) needed in EM REML. In each REML iteration, estimates of location
parameters are obtained from the real data, whereas PEVs are obtained by repeatedly
simulating data and estimating their location parameters. This approach allows for
the calculation of PEVs without inverting the coefficient matrix, leading to memory
requirements similar to solving the mixed model equations.

Although the EM algorithm is known to have slow convergence, the MC EM REML
approach makes REML feasible for large data sets and complex models, where direc
inversion of the coefficient matrix would be too memory and time consuming.

The implementation for the variance component estimation supports the majority of
models available in MiX99. However, no metafounders are allowed, and only few
single-step models.

11.3.1 Running MC REML

Estimation of variance components requires execution of two programs. First, the pre-
processor program mix 991 is executed with initial values for the variance components.
Then, the solver program mix99s is executed with specific instructions in the solver
option file (see VAROPT option line in Chapter 4.6). When the solver VAROPT option
is " E’ for variance component estimation, thererafter comes the following options:

« STOPE

Convergence criterion and number of Monte Carlo samples.
« SEED
Type of the random number generator seed.
« MIXPATH
Directory path of the preprocessor program mix991i.
After these comes the SOLTYP option.

An example of a mix99s solver input file for variance component estimation:

# RAM: RAM options
H
# STOP: Max.iter, Conv.value BLUP: observed data, Criterion, Enforce
1000 1.0e-5 d f
# RESID: Residuals calculation
N
# VALID: Model validation
N

# VAROPT: Variance optons VCE, PEV, HV
E

# STOPE: REMLrounds, Samples, Conv.value VCE, [Conv.value BLUP] [Last samples]
1000 3 1.0e-10 3.0e-5 100

135



Command Language Interface for MiX99 (CLIM)

# SEED: Type of seed for the random number generator
R

# MIXPATH:
/share/apps/

# SOLTYP: Solution files options
Y

Note the ' E’ option in VAROPT, and the subsequent lines for STOPE, SEED, and
MIXPATH. In this example, the number of REML iterations is limited to 1000, the number
of Monte Carlo samples per iteration is 3, the convergence of REML is 10~1°, and the
convergence of the BLUP for the sampled data is 3.0 x 10~°. The last REML round
will use 100 Monte Carlo samples for the estimation standard errors of the variance
parameters. The seed will be random.

Because models used in MC EM REML estimation are usually complex and the analyses
time consuming, it is possible to change some of the iteration parameters during the
execution of the mix99s solver to be more suitable. This change can be made using an
external file named I TER, which allows modifying parameters regarding both breeding
value estimation and variance component estimation.

If the estimation is wanted to be stopped beforehand, this can be done in a controlled
way using an external sTOP file (see Chapter 4.2).

11.3.2 File with starting values of (co)variance components

The file with the starting values for the (co)variance components must be in the same
format as described in Chapter 3.4. The file will be specified by the PARFILE command.
The same rules apply also for a file with starting values for the multiple residual
(co)variance matrices in the case that a model with multiple residual (co)variances is
applied (optional).

11.3.3 CLIM and variance component estimation

There is no need to give CLIM instructions specifically for variance component estima-
tion. This is because the mix 991 pre-processor will make the preconditioner matrices
using the initial values for the variance components. To improve PCG solver conver-
gence, these matrices are updated with the most recent variance component estimates.
In the current implemention, the mix99s solver will periodically restart mix991 through
a system call at certain REML iteration intervals. For this purpose, the pre-proprocessor
stores its instructions to the files:

* MiX99 IN.DIR (model information) and
* MiX99_ IN.OPT (command-line options).

These files must be available and contain the same information used as in the original
pre-processing run for the variance component estimation process to work. Alternatively,
MiX99 instruction file named as Mix99_DIR.DIR can be used to specify the pre-
processor directives for the preconditioner update. This file is automatically created by
mix 991 when CLIM is used to define the model. File Mix99_ DIR.DIR contains the
same model information as the CLIM file in instruction file format.

Updating of the preconditioner matrices is done every 10" REML round during the
first 100 REML rounds and on every 100" REML round thereafter. If the updating was
unsuccessful, the text
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Updating of preconditioner failed!

is printed to the standard output and further instructions are given to check for additional
error information:

See files MiX99_DIR.LOG and WARNING.log.

If pre-processor directives for the preconditioner update could not be found, this in
indicated by error message:

Either MiX99_IN.DIR or MiX99 DIR.DIR file is needed as directive file
for mix99i.

11.3.4 Number of Monte Carlo samples

The second parameter given on the STOPE line is the number of Monte Carlo samples
per REML iteration, i.e., the number of data samples. This is a number of data
samples generated and analyzed within one round of stochastic MC EM REML.

The number of data samples analyzed within a REML round directly influences the
accuracy of the estimated prediction error variances (PEV) needed in the REML algo-
rithm. Increasing the number of samples reduces the Monte Carlo error associated
with PEV estimation. However, the size of the Monte Carlo error also depends on the
complexity of the specified model, amount of data, and number of individuals included
in the analysis.

We have observed that the convergence of the MC EM REML algorithm is not affected
by the number of samples specified per REML round. For many models, even one
sample per REML round is sufficient. This is an important consideration, because each
additional data sample requires solving an additional BLUP model within a REML round,
which increases the total computation time. However, one sample per REML round
does not allow computing standard errors for the final variance estimates. The number
of samples during the last REML round can be set separately. It must be more than
the number variance parameters with some margin in order to compute the standard
errors.

Our experiences so far suggest that analysis with large amount of data and a sufficient
number of individuals (e.g., test-day data with observation from over 10 000 individuals)
requires only one Monte Carlo sample per REML round. In contrats, when the amount
of data is rather small in relation to the number of parameters to be estimated, a higher
number of samples (5, 10 or 20) may be more appropriate. For some analyses with
limited data, REML implementation that does not rely on a Monte Carlo method can be
more suitable.

11.3.5 Determining convergence of REML parameter estimates

There is a need for a convergence indicator which accounts for the characteristics that
parameter estimates are associated with Monte Carlo noise. The currently implemented
convergence indicator is calculated from the vectors containing predicted variance
component estimates at two points x — 1 and = ( s(z — 1) and s(x)), where the prediction
is based on estimated variance components obtained during the latest x EM rounds
(@k—=+D) . @®)) and where a predicted estimate for each variance parameter is
calculated as s;(z) = a; + S;x. The size of = is chosen to be large enough to minimize
the Monte Carlo noise in the convergence indicator, which is calculated for REML round
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o _ (B9 8 - 1) (5W(x) — 3 (x - 1))
: (30(x)" (39(2))

After cc(;) has reached a value smaller than the specified convergence criterion (see
STOPE option line), the REML analysis will perform a sequence of 30 additional MC EM
REML rounds, which will reduce the Monte-Carlo error from the parameter estimates
by using weighted average with decreasing weights for latest solutions. Depending on
the analysis, we have found that values between 10~® to 10~? are suitable convergence
limits.

11.3.6 Keeping certain variance components fixed

In some analyses it might be desirable to keep certain pre-defined variance components
(starting values) unchanged during the MC EM REML estimation. This can be instructed
in the MiX99 solver option file.

For this option, the VAROPT option line must have three entries:
efn,
where
« finstructs mix99s to keep chosen parameters unchanged.

* n is an integer indicating how many variance parameters should remain un-
changed.

After the VAROPT option, n additional lines must be given. Each line specifies one
parameter that should remain unchanged. Each line consists of three integers:

1) The random effect number.
2) The row index.
3) The column index.

These values identify the specific variance component to be unchaged. Note that for
a covariance, only the upper or lower triangle matrix position needs to be given. In
practice, you can copy the corresponding line from the parameter file, excluding the
actual variance component value.

When the model has multiple residual variance matrices, four integers need to be
defined for each unchanged residual variance.

1) The random effect number of the residual effect.
2) The residual variance class number.

This is equal to the first number on the corresponding parameter line in the file
containing multiple residual (co)variances.

3) The row index.

4) The column index.
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11.3.7 Restarting estimation of variance components

In the case the estimation has stopped or completed, but additional REML rounds are
needed, the estimation can be resumed without rerunning the pre-processor mix99i.
This is done by launching the solver mix99s again and specifying a negative value
for the maximum number of iterations in the STOPE line of the solver option file. This
negative value represents the new total number of REML rounds and must be greater
than the REML rounds completed in the previous run.

For example, if the estimation stopped at REML round 1000 and you wish to make 1000
additional rounds, the new maximum number of iterations should be set to —2000. The
estimation will resume from the last completed iteration (as recorded in the last row of
the REML 1 0g file), and the new estimates will be appended to the REML 1 og file. Other
parameters related to PCG and REML iterations can also be changed for the continued
estimation.

Variance component estimation can be restarted as a new run using previously esti-
mated variance components as initial values. To do this, copy the estimated variance
components from the parfile into the file specified by the PARFILE command (and
RESIDFILE, if applicable). Remember to save the old REML 1 og file under a different
name to keep the previous estimates. At this stage, you may also modify other estima-
tion parameters. Then, run the pre-processor mi x 991 to initialize the estimation with
the new starting values for variance components before launching mix99s to begin the
restarted estimation.

11.3.8 MC EM REML for MACE

A special case is the estimation of variance components for a MACE model. Variance
component estimation of the MACE model can be done by keeping the residual variance
fixed at unity and applying weights, wi; = EDC;;/(\jo; ) with \; = (4 — h%)/h3, for
deregressed breeding values for bull i/ in different countries j (Tyriseva et al., 201 1).
However, estimation of variance components will change genetic variances a that
were originally used in the calculation of the weights. Therefore, it will be more accurate
to update the weights after new estimates of genetic variances are available. MiX99 can
do this updating of weights for the MACE model automatically after each REML round
when option ei instead of just e is specified for estimation of variance components on
the VAROPT option line.

11.3.9 Standard errors for REML parameter estimates

MiX99 can calculate approximate standard errors for variance component estimates
at the last REML round. These are based on variances over sampled gradients as
explained for the NR method in Matilainen et al. (2013). Standard errors are calculated
automatically when the number of data samples is more than the number estimated
variance parameters. Adequate number of samples depends on the data and model,
but it is recommended to use at least 50 more samples than the number of estimated
variance parameters.

Because using only a small number of data samples (even just one) is computationally
fast, a practical approach is to first estimate variance components with a small number
of samples. Once the variance components have converged, an additional REML round
can be executed to compute standard errors. This can be done in two ways:

» Continue the variance component estimation.
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» Restart the estimation using the previously estimated variance components as
initial values.

In both cases, the number of Monte Carlo samples should be increased in the solver
option file so that the standard errors can be calculated.

After the final REML round, the approximate standard errors and the covariances of
REML estimates in the information matrix are written to files. These values can be
computed only when the number of Monte Carlo samples is more than the number of
variance parameters. It is possible to give the number of Monte Carlo samples in the
last REML round separately in the solver directives. Thus, one can use a lower number
of samples during the iteration to achive fast computations and only having reached
covergence use many Monte Carlo samples in the last REML round. Note, however,
that if the REML iteration is terminated due to reaching the maximum number of REML
rounds, the separate last REML round value is not used, because reaching maximum
number of REML rounds can be a sign of non-convergence.

Standard errors are printed to files:

* vceSE: has four columns, similar in structure to the parfile file, but has the
approximate standard errors.

* vcel: has the information matrix.

Example about vcesSE is for one trait with two random effects and a residual:

vceSE:
1 1 1 208.134
2 1 1 272.508
3 1 1 59.4737

Example of a vceI file. The information matrix vceT has seven columns. The first
three integers indicate the first variance parameter and the next three integers indicate
the second variance parameter. The seventh column has the covariance between the
two parameters. For example, for the case above vceT is

vecel:!
1 1 1 1 1 1 43319.7
2 1 1 1 1 1 -44735.8
2 1 1 2 1 1 74260.4
3 1 1 1 1 1 -1222.08
3 1 1 2 1 1 485.008
3 1 1 3 1 1 3537.12

where the first line has value for the first random effect, the second line has value
between the first and the second random effect, the third line has value for the second
random effect, and so on.

Because the information matrix contains values for every combination of (co)variance
parameters, it can become very large. Let the total number of variance components be
¢, then the number of lines in a vce fileis ¢ x (¢ +1)/2.

Consider a model with six (co)variance parameters. The file for standard errors has six
lines:
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DN
DN NN

98919.7
3534.95
155,895
82881.3
2914.91
126.006

S N

The information matrix file has 6 x 7/2 = 21 lines:

vecel:
1 1 1 1 1 1 0.978512E+10
1 2 1 1 1 1 0.310664E+09
1 2 1 1 2 1 0.124959E+08
1 2 2 1 1 1 0.987140E+07
1 2 2 1 2 1 483421.
1 2 2 1 2 2 24303.1
2 1 1 1 1 1 ~0.755926E+10
2 1 1 1 2 1 -0.238666E+09
2 1 1 1 2 2 -0.741774E+07
2 1 1 2 1 1 0.686931E+10
2 2 1 1 1 1 -0.236382E+09
2 2 1 1 2 1 -0.937649E+07
2 2 1 1 2 2 -355953.
2 2 1 2 1 1 0.216383E+09
2 2 1 2 2 1 0.849670E+07
2 2 2 1 1 1 -0.737152E+07
2 2 2 1 2 1 -356791.
2 2 2 1 2 2 -17917.6
2 2 2 2 1 1 0.667658E+07
2 2 2 2 2 1 319118.
2 2 2 2 2 2 15877.5

For a model with 42 (co)variance parameters, the vceT file of the information matrix
contains 903 lines.

If model has multiple residual variance matrices, the standard errors for all residual
classes are printed after the first residual class (like in REML1og).

11.3.10 Solution files for variance components

REMLlog

parfile

Contains the estimates of variance components at every REML round. The
first column in the file specifies the REML round and the second column
the convergence criterion value of that round. After the second column
as many columns follow as there are variance component parameters to
be estimated. The order of the lines is as following. The first three lines
in the REML 1049 file describe the order of the parameter columns. The
first line has the random effect number and the second and third lines the
row-column combination for the particular parameter of a random effect.
Hence, the first three lines are identical with the first three columns in
the file with the (co)variance components. If multiple residual variance
matrices are defined, then their variance class number is added to the
end of the file. The fourth line contains the initial parameter values used.
The following lines contain the estimates of variance components at each
REML round.

Contains the latest solutions of variance component estimates. The struc-
ture of the file is the same as in the file defined by PARFILE.

141



Command Language Interface for MiX99 (CLIM)

resfile Contains the latest solutions of residual variance component estimates
when multiple residual variance matrices are defined. The structure of the
file is the same as in the multiple residual variance matrices file defined by
RESIDFILE.

vceSE This file will be produced when approximated standard errors for REML
parameter estimates are calculated. Resembles parfile. First three
integers indicates the random effect number and row-column combination
of that matrix. Fourth column contains the real value and is approximated
standard error. If the model has multiple residual variance matrices, these
are numbered as in REML 1 og and printed right after the standard errors
for other random effects.

vecel This file will be produced when approximated standard errors for REML
parameter estimates are calculated. The file has seven columns. Seventh
column has the value of the information matrix for each pairwise parameter
combination. The first parameter is indicated by the first three integers
as in vcesE, and the second parameter is indicated by the next three
integers as in vceSE.

11.4 Prediction error variances by Monte Carlo

Using mix99s to compute approximate prediction error variances (PEV) by Monte Carlo
is similar to the variance component estimation by Monte Carlo REML (Chapter 11.3.1).
The same limitations of the models available apply as for variance component estima-
tion.

Computation of PEVs by Monte Carlo differs from using Monte Carlo REML in that
several Monte Carlo samples are used and no multiple REML rounds are executed. In
the mix99s options file there are two differences to the variance component estimation:
VAROPT has 'P’ instead 'E’, and STOPE has only the number of Monte Carlo samples.

The mix99s options file for MC PEV includes:
VAROPT has the Monte Carlo estimation method:
— P1: method 1
— P2: method 2
— P3: method 3
STOPE has the number of Monte Carlo samples.
SEED is as for MC REML.
MIXPATH has path for the preprocessor program mi=991.

The methods one to three refer to the Garcia-Cortés methods (Garcia-Cortés et al.
(1995)). An example of a mix99s input file for computing prediction error variances by
Monte Carlo using Garcia-Cortés method 3:

# RAM: RAM options
H

# STOP: Max.iter, Tolerance, Convergence criterion, Enforce
5000 1.0e-5 r f
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# RESID: Residuals calculation

N
# VALID: Model validation
N
# VAROPT: Prediction error variances by Monte Carlo
P3
# STOPE: Number of Monte Carlo samples
50
# SEED: Type of seed for the random number generator
R
# MIXPATH:
/share/apps/
# SOLTYP: Solution files options
Y

The Garcia-Cortes method 1 uses expection in its computation formula while method 2
relies on Monte Carlo samples only. Method 3 pools these two methods using weights
that try to optimize the best result. Thus, on average over all prediction error variances,
method 3 may require the least number of Monte Carlo samples to get most accurate
values.

11.5 Prediction error variances by direct inversion

MiX99 allows the computation of prediction variances and accuracies using the exa 99
program via inversion of the MME coefficient matrix. The exa 99 needs to be specifically
requested. exa 99 is only useful for small problems (up to 200 000 equations) due to it
taking a lot of memory and becoming slow for larger equation systems. Furthermore,
models not supported include those using the REGMATRIX command and most single-
step GBLUP models. Approximate reliabilities can be computed using apax99 and
apax99p which are intended for large-scale computations.

11.5.1 Command options
Execution of exa 99 requires an option file, which is read by standard input. The first

information asked by exa99 are internal storage format used for making coefficient
matrix of the mixed model equations.

There are four matrix formats:
F Full dense storage
F

Internally the program stores the coefficient matrix in a rectangular double
precision matrix. In practice, this storage format will give the fastest
computations but may require a lot of computer RAM memory.

A number can be given after the 'F’ letter. This number is used to multiple
diagonal elements of the coefficient matrix to make it full rank. Default
value is 1.0001. The format is

F 1.0001
Fs Full dense storage
7S

This is like the F option except that memory is used less by lower numerical
precision. Thus, in some cases, this option may have much more deviation
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to the correct results. This can happen when the variance component of a
random effect is very high or low either in proportion to total variance or in
absolute value.

Packed vector storage

v

Internally the program stores the coefficient matrix in a packed upper
triangle vector format. Thus, the RAM memory need is about half of the
full dense storage. However, computationally this storage form can be
much slower.

Sparse matrix storage
s

Internally the program stores the coefficient matrix as a sparse matrix.
Number of non-zeros is set to be 15 times the size of the coefficient matrix.
A number can be given after the ’S’ letter which is initial guess for the
number of non-zeros in the coefficient matrix. Thus, then the format is

S 1234567

Only the lower triangle of the matrix is stored. Thus, memory need can
be much less than for the packed vector storage. If the number non-zeros
given is not enough, the program will increase sparse matrix size. However,
this will use more memory than is optimal. Computationally the sparse
matrix storage form can be very slow.

The total memory need depends on the order of equations and can be
even higher than for the full dense storage. When specifying the model
in the MODEL line(s), it is important to order the effects by the number of
their levels. For the within block effects, the effect with the most levels
should get the lowest block ordering number and the effect with the least
levels the highest. Similarly, for the across block fixed effects, the effect
with most levels should be specified first and the effect with the least levels
should be specified last in the model line. This helps keeping the memory
requirements as low as possible when inverting the coefficient matrix.

The sparse matrix storage allows numerical filtering of low values in order
to preserve some sparsity. After the format line, a line having three
numbers (these numbers are examples) is given:

1E-5 1E-6 1E-7

where the first number (1E-5) is for the operational zero of diagonal values,
the second number (1E-6) is for the operational zero of off-diagonal values,
and the last value (1E-7) is matrix sparsity value. Often these values are
the same.

The three values have two purposes. First, these values are used to detect
singularities in the coefficient matrix, i.e., dependencies. Singularity detec-
tion can help making the computations more reliable because rounding
errors due to almost zero values are not propagated. Second, the values
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allow preserving some sparsity in the matrix. The operational values mean
that when during inversion calculations absolute value of added element
is less than operational value, the value is not added to the coefficient
matrix. Too high operational value leads to too high approximation of
computations. The matrix sparsity value is used to make a matrix element
value zero when absolute value of an element is less than the sparsity
value. Thus, the operational zero values are used to effectively zero values
calculated during inversion calculations but the sparsity value is used to
neglect elements for these computations even before these computations
are made.

The operational zero and sparsity values are ways to increase sparsity in
the coefficient matrix during computations. The higher the values given
the more approximations are used in the computations. Note that none of
these values affect during making of the coefficient matrix.

The coefficient matrix of mixed model equations can be non-inverable due to depen-
dencies between model effects. In order to have an invertable matrix, a small value is
added to the diagonal of all fixed effects. A number can be given after the 'F’/Fs’ or 'V’
matrix formats to change the value added to the diagonal. Default value is 0.001. The
format is

F 0.001

If the model has only one fixed effect, such as the general mean, there is no need to
add this value. Thus, the value can be changed to be zero:

F 0.0

This is not recommended as a general approach because models often have depen-
dencies and with dependencies the inversion fails and terminates the program. The
error message is either that the coefficient matrix is singular or that the matrix is not
positive definite. The sparse matrix approach makes always a generalized inverse
where dependies are taken care automatically.

After the matrix format information has been given, name of the file having diagonal
values of the genetic relationship matrix is asked. If accuracies of breeding values are
of no interest or the model has no additive genetic effect, then answering NONE allows
computations without this information.

The diagonal matrix file has format:
<ID code> <Diagonal value>

For example, diagonal of the pedigree-based relationship matrix for individual i is 1 + F;
where F; is the inbreeding coefficient of individual i.

An example of an exa 99 option file:

F
Adiag.dat

Full dense storage format and diagonal of relationship matrix is in file Adiag.dat.

For sparse matrix storage the command lines can be:
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S 1234567
1E-5 1E-6 1E-7
Adiag.dat

11.5.2 Output files

The output files of exa99 have the same setup as when solving the mixed model
equations. Structure of the output files depends on the model. Therefore, explanation
of the content of those files is given in the printout of the particular run of exa99.

ACCani PEV and accuracies for the individual additive animal genetic effects.
SEfix Standard errors for all across blocks fixed effects.

SEfnn Standard errors for the n' within blocks fixed effect. For example, SE£02
is the solution file for the 2" within block fixed effect.

PEVrnn Prediction error variance for the n random effect in the model. For
example, PEVr 03 is the solution file for the random effects with the random
effect number 3.

SEreg Standard errors for the across whole data regression effects.
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12 Summary of all commands

CLIM has optional commands, and options to the required commands. If an optional
command is not given then default values are used for this command. In general, the
commands are quite self-explanatory. Below they are divided into groups. There are
chapter numbers after the short description. Required commands are explained in
Chapter 12.1 and optional commands in Chapter 12.2.

Data file commands
DATAFILE name of data file, 3.1
DATASORT  information on how the data file was sorted, 12.2.4 (optional)

INTEGER integer number column names in the data file, 12.1.3
MISSING code for missing observations, 12.2.14 (optional)
REAL real number column names in the data file, 12.1.7
REGFILE regression matrix file, 12.2.19 (optional)

TABLEFILE name of the separate covariable table file, 12.2.35 (optional)

TABLEINDEX integer number column name of the covariable table file number
in the data file, 12.2.36 (optional)

TRAITGROUP integer number column name of the trait group number, 12.2.41
(optional)

Pedigree file commands

PEDFILE name of pedigree file, 3.3

PEDIGREE  effect/component name in the model to which the pedigree is
attached. Also, type of pedigree information, i.e., model type
(animal or sire model). If random unknown parent groups, then
coefficient value as well, 12.1.6 (optional)

Variance component information

PARFILE MiX99 variance components file, 3.4
RESIDFILE name of residual (co)variance parameter file, 12.2.24 (optional)

RESIDUAL  integer number column name of the residual (co)variance number,
12.2.25 (optional)

REGPARFILE name of random regression matrix parameter file, 12.2.21 (op-
tional)

Model commands

MODEL statistical model
RANDOM random effects in the model, 12.2.18 (optional if additive genetic
and residual effects are the only random effects)

REGMATRIX regression matrix information, 12.2.20 (optional)
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Solving

NORANSOL random effects for which no solution files are to be writ-
ten, 12.2.15 (optional)

PRECON preconditioning information, 12.2.17

TITLE title of the analysis, 12.2.39 (optional)

TMPDIR directory for the MiX99 temporary files, 12.2.40 (op-
tional)

WITHINBLOCKORDER ordering of effects in the blocks (optional)

Macros and range abbreviations

DEF INE defines a text macro replacement

12.1 Required commands
Following are explanation and syntax of all commands.

12.1.1 MODEL
MODEL is considered in Chapters 6, 7, 9, 10.5, and 11.

12.1.2 DATAFILE
Name of data file. Optional information: file type of text or binary can be given. The
default is text file. So, for a binary file, file type must be always specified.

Syntax:
DATAFILE [TEXT/BINARY] <filename>

Example. Data file Beef_Mix.dat has standard text data.
DATAFILE ../data/Beef_MiX.dat

12.1.3 INTEGER
Names of integer number columns in the data file. These are used to give names to
data file columns.

Syntax:
INTEGER <names of integer variables>

Example. Data file having 8 columns of integer data information. The first column is
named block, second is id, the third is trt_group etc.

INTEGER block id trt_group HTM AGE DCC DIM

12.1.4 PARFILE
Name of (co)variance parameter file. Values of variance components can be given
using several ways and formats. Please see Chapters 3.4 and 3.4.1.

Syntax:
PARFILE <filename>
Example. Name of the parameter file is Beef . par.

PARFILE ../data/Beef.par
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12.1.5 PEDFILE

Name of the pedigree file. This pedigree file is read by mix99i. The PEDFILE
command can have a specifier or file type. When the specifier is DYD, then DYDs can
be computed by the solver program. When the pedigree type is FILE in the command
PEDIGREE, the file has the inverse of the co-variance matrix for the breeding values.
The default format for the matrix is the lower triangle co-ordinate sparse matrix format.
Option MIXED can be used to relax the requirement of the lower triangle matrix (see
Ch. 9.3.2). However, this means that the file can have an element (1,2) of the matrix,
i.e., an upper triangle element, but the file should not have a corresponding lower
triangle element (2,1). This condition is not checked. Alternatively the LOWER option
allows the use of the lower triangle dense matrix format or LOWER format. This option
allows faster computations than the co-ordinate sparse matrix format.

Syntax:
PEDFILE [DYD | LOWER | MIXED] <filename>

Example 1. Name of the pedigree file is Beef_phantom.ped.
PEDFILE ../data/Beef_phantom.ped

Example 2. Name of the pedigree file is Beef phantom.ped and DYDs will be
requested.

PEDFILE DYD ../data/Beef_phantom.ped

Example 3. Name of co-ordinate format matrix with upper and lower triangle elements:
PEDFILE MIXED ../data/iG_matrix.dat

Example 4. Name of lower triangel dense matrix:

PEDFILE LOWER ../data/iGL_matrix.dat

12.1.6 PEDIGREE

Pedigree type and other information. Three types of pedigrees are accepted: am for
animal model, sm for sire model, and ar for autoregressive model. Genetic groups
or unknown parent groups are indicated by the suffix +p, e.g., am+p for an animal
model with unknown parents groups. Pedigree has been stored in the file given by the
command PEDFILE.

When the pedigree type is FILE, the inverse of the relationship co-variance structure
(e.g. G~ in GBLUP) is in the file specified by the PEDFTTL.E command. See example in
Ch. 9.3.

Syntax:

PEDIGREE <effect name> <pedigree type> &
[<optional coefficient for random unknown parent groups>]

Example 1. Pedigree is for an animal model with random unknown parent groups.
Pedigree is associated with model effect name G. The unknown parent groups are
random with the inverse genetic variance (matrix) multiplied by the coefficient 0.5.

PEDIGREE G am+p 0.5

Example 2. GBLUP model where the inverse of the genomic relationship matrix G—! is
in file iGL.dat stored in the lower triangle dense matrix format.
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PEDFILE LOWER iGL.dat
PEDIGREE G FILE

12.1.7 REAL

Names of real number columns in the data file. Integer number columns are always
before real number columns. See MiX99 manual Technical reference guide for MiX99
pre-processor for more information.

Syntax:
REAL <names of real variables>

Example. There are 3 real number columns (after the integer number columns) in the
data file. The firstis B_WEIGHT, the second is W_WEIGHT, and the third is W_AGE.

REAL B_WEIGHT W_WEIGHT W_AGE

12.2 Optional commands
The following commands have default values that are used if the command is not given.

12.21 AR

Define the autoregressive values for each trait in autoregressive model. When this
command is given, the PEDIGREE command type must be ar. The default is no
autoregressive model.

Syntax:
AR <values for each trait>

Example. Autoregressive values for 2 traits
AR 0.8 0.9

12.2.2 CENTERFILE

The file defined by this command has values for centering marker data defined in
SNPMATRIX and SNPFILE. The file has two columns: marker number and centering
value. The marker numbers are from 1 onwards corresponding to the columns in
SNPFILE after the first column (ID values). Thus, number 1 is the second column in
SNPFILE. When the CENTER option in SNPMATRIX has 'p’, CENTERFILE is assumed
to have allele frequencies, i.e., values from zero to one. The values will be multiplied by
two before centering the genotype values in SNPFILE. When the CENTER option is ’f’
then the values are used as such.

Syntax:
CENTERFILE <filename>

Example. Base population allele frequencies are in file baseAF . dat
CENTERFILE baseAF.dat

12.2.3 COVFILE

Attaches the given inverse correlation matrix to the specified random effect. The given
matrix is in a file which is by default in the co-ordinate (Yale) sparse matrix format. The
LOWER option allows the use of the lower triangle dense matrix format or LOWER format
(see Ch. 9.3.2).

Syntax:
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COVFILE <random effect name> [LOWER] <filename>

Example. Inverse correlation matrix for the random effect named genomic is in file
covfile.dat inthe lower triangle dense matrix format:

COVFILE genomic LOWER covfile.dat

12.2.4 DATASORT
Names of the integer number columns for the block sorting variable (R1.0CK), and the

pedigree individual sorting variable (PEDTIGREECODE). By default, none are needed.

See MiX99 manual Technical reference guide for MiX99 pre-processor for more expla-
nation.Syntax:

DATASORT BLOCK =<block in INTEGER column> &
PEDIGREECODE=<code in INTEGER column>

Example. The block code is integer number column block, and the pedigree code is
column IDcode in the data file

DATASORT BLOCK=block PEDIGREECODE=IDcode

12.2.5 DEFINE
Defines a macro identifier to be used as an abbreviation for its replacement text:

DEFINE <macro name> <replacement text>

Instructs to replace all successive occurrences of the identifier with the replacement.
Allows to shorten repeatedly occurring text, for example, directory names and common
effects in complex CLIM models.

In addition to macros, a range expansion can be used as an abbreviation. Every
occurrence of

<identifier><N>:<M>
is replaced by a space separated list of
<identifier><N> <identifier><N+1> ... <identifier><M-1> <identifier><M>

where the identifier is replicated M-N+1 times with integers from N to M. For example,
het1:5 is replaced by

hetl het2 het3 hetd4d het5

Range expansion can be used, for example, to name INTEGER and REAL columns, or
to specify covariable table columns in complex models.

Example:

DEFINE HomeDIR /home/user
DEFINE WorkDIR .

DATAFILE HomeDIR/mydata.dat
PEDFILE HomeDIR/mydata.ped

INTEGER block IDcode HTM YM SEASON AGE DCC DIM

REAL milk protein fat x1:2 hetl:5
DEFINE CurveMILK Curve(tl:3 t4 t£96 | SEASON)
DEFINE CurvePROT Curve(tl:3 t95 t97 | SEASON)
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DEFINE CurveFAT Curve ( | SEASON)

DEFINE Common AGE DCC YM HTM

MODEL
milk = CurveMILK Common PE ( | IDcode) @1lst G( | IDcode) @FST
protein = CurvePROT Common PE ( | IDcode) @1lst G ( | IDcode) @FST
fat = CurveFAT Common PE ( | IDcode) @lst G ( | IDcode) @FST

TMPDIR WorkDIR/tmpMiX

is replaced by

DATAFILE /home/user/mydata.dat
PEDFILE /home/user/mydata.ped

INTEGER Dblock IDcode HTM YM SEASON AGE DCC DIM

REAL milk protein fat x1 x2 hetl het2 het3 het4 hetb
MODEL
milk = Curve ( | SEASON) AGE DCC YM HTM &
PE ( | IDcode)d lst &
G( | IDcode) @FS
protein = Curve ( | SEASON) AGE DCC YM HTM &
PE ( | IDcode)@lst &
G ( | IDcode) @FS
fat = Curve ( | SEASON) AGE DCC YM HTM &
PE ( | IDcode)@lst &
G ( | IDcode)@FST

TMPDIR ./tmpMiX

Currently, the preprocessor (mix991i) command line option ——usemacros is needed
to activate the CLIM macro and range expansion.

12.2.6 GBLUP

This allows for a GBLUP model by attaching the given inverse genomic relationship
matrix in a file to the effect specified to be the random additive genetic effect. The
matrix format in the file is by default in the co-ordinate (Yale) sparse matrix format.
Lower triangle dense matrix is allowed with the LOWER option. Note that the random
genetic effect has to be the last one on the model line. See covr 1LE for having several
external correlation matrices associated with other random effects than the genetic.

Syntax:
GBLUP <random effect name> [LOWER|MIXED] <filename>

Example. Inverse genomic relationship matrix for the random effect named IDcode is
in file 1GL.dat in the lower triangle dense matrix format:

GBLUP IDcode LOWER iGL.dat

12.2.7 IA22FILE
This command partly depricated, only allowing TA22FILE PEDIGREE.

Giving PEDIGREE for IA22FILE indicates MiX99 that the computations for A ! are
done using pedigree information available in the file defined by PEDFILE. The compu-
tations are typically fast because there is no need to make A_ and the solver uses fast
sparse matrix routines for the computations.
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Syntax:

IA22FILE PEDIGREE

12.2.8 ICFILE
Gives the file for ssGTABLUP in the single-step method having the matrix C~! =
(+Z,A,)Z.+B")"! matrix in

G = (1 - w)ZBZ. + wA,) ' = A — LA iz clz A

c c 99 w99 w2 99 7¢ ¢ g9

where w is the residual polygenic proportion, Z. has the centered marker matrix, and B
has the scaling information. The command requires the zCFILE command. The C!
matrix file can be made by a special preprocessing program such as T48eig_make.
The approach requires the A_' matrix to be given separately using the command
TA22FILE with option PEDIGREE, i.e., TA22FILE PEDIGREE,

Syntax:
ICFILE <filename>

Example. Matrix C~! is in the iC.dat file:
ICFILE iC.dat

12.2.9 IGAMMAFILE

Gives the name of the file having the I'"! matrix for models having metafounders. The
matrix has to be in co-ordinate sparse matrix format. Index values are metafounder
numbers.

Example. Matrix I' ! is in the iGamma . dat file:

IGAMMAFILE MIXED iGamma.dat

12.2.10 IGFILE

This command can be used for the single-step method, but please use the SSGRL.UP
command instead. The IGFILE command allows giving an additional inverse covari-
ance matrix for a subset of individuals as in the single-step method. An approach is to
provide the Cgy = G1 — Ag—g1 matrix. Typically, TA22FTLE command is give as well
(IA22FTILE PEDIGREE’), and then the file given for TGFTL.E must contain G™! only.

The default matrix format is the co-ordinate (Yale) sparse matrix format, which is easiest
to use with the MIxXED option. Often more effient is the lower triangle dense matrix
format (see Ch. 9.3). For this matrix, the LOWER option (IGFILE LOWER’) need to be
used.

Syntax:
IGFILE [LOWER | MIXED] <filename>
Example. Matrix Cq4 is inthe iH.dat file:

IGFILE iH.dat
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12.2.11 IHPRECON

Gives the file having changes to the The preconditioner matrix in the diagonal of the
inverse relationship matrix. For example, consider an inverse relationship matrix for the
0 0

0 G'—A}
pedigree relationship matrix for all individuals, G~ is the inverse genomic relationship
matrix, and A} is the inverse pedigree relationship matrix of the genotyped individuals.
When command T2A22FILE is used with the PED IGREE option, the preprocessor pro-
gram uses a Monte Carlo approach to approximate the diagonal element values of Ag—;
for the preconditioner. However, this step takes some time, and repeated computations
for the same set of genotyped needs the same values. Thus, precomputed values can
be used instead. These values can be given using the THPRECON command. One
diagonal element of —A_ ' is given on a line: <ID code> <value>. Note that these are
NOT diagonal elements of A, nor A_' but diagonal elements of —A_!. Furthermore,
single-step GTBLUP needs different values. Because there is a high change of pro-
viding incorrect values, the use of the THPRECON can be error-prone. Alternatively, no
precomputed values nor the Monte Carlo computations can be requested. This can be
achieved with command "THPRECON NONE", but this may lead to poor convergence.

single-step method: H™! = A1 — [ } where A~! is the inverse of the

Syntax:
IHPRECON <filename>

Example. Diagonal of matrix —Ag‘gl isinfile minus_diA_genotyped.dat
THPRECON minus_diA_genotyped.dat

12.2.12 INBREEDING

Column numbers of the individual ID code and inbreeding coefficient in the inbreeding
coefficient file (see 12.2.13). The default is that all inbreeding coefficients are zero. The
column number of the individual ID code must be before the inbreeding coefficient.

Syntax:

INBREEDING PEDIGREECODE=<individual ID code column> &
FINBR=<inbreeding coefficient column>

Example. The first column has the individual ID code, and the third column has the
inbreeding coefficient:

INBREEDING PEDIGREECODE=1 FINBR=3

12.2.13 INBRFILE
Name of the inbreeding coefficient file. The default is that all inbreeding coefficients are
zero, and, thus, no inbreeding coefficient file is read.

Syntax:
INBRFILE <filename>
Example. Inbreeding coefficient file is my . inbr:

INBRFILE my.inbr
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12.2.14 MISSING
Number indicating missing information for data in the real number columns. The default
is zero.

Syntax:
MISSING <number for missing>
Example. Set missing value to -99999.0

MISSING =99999 .0

12.2.15 NORANSOL
Give random effects for which no solution files are made. The default is that solutions
are written for all random effects.

Syntax:
NORANSOL <random effects>
Example. No solutions are written of effects HTM and PE.

NORANSOL HTM PE

12.2.16 PARALLEL

Information on parallel computing: number of processors and number of common area
blocks. Alternatively, common area blocks can be defined by specifying the block code
of the first common area block instead and adding option FTRST after it.

Optional additional information is method of the workload division, and total maximum
size of I/O buffers. The default is no parallel computing, i.e., number of processors is
zero. Work division is either by number of records (default), or number of equations.
Giving letter E or e will use number of equations in work division to the processors.

Total size of I/O buffers is given as an integer number in megabytes but by default is
determined by the preprocessor program. See PARALLEL in MiX99 manual Technical
reference guide for MiX99 pre-processor for more information.

Syntax:

PARALLEL <N processors> <N common blocks> [<work division> <buffer size>]
PARALLEL <N processors> <first common block> FIRST [...]

Example. Parallel computing with 6 processors. The last 10 blocks in the data file
belong to the common area blocks.

PARALLEL 6 10

12.2.17 PRECON

Information on the preconditioning. Format is the same as given in MiX99 manual for
mix991 Technical reference guide for MiX99 pre-processor. Thus, the first characters
(one for each effect) are for the within block effects, and then one common for all across
blocks effects. The default is block diagonal preconditioner for all effects.

effect type available preconditioners

within block d=diagonal, b=block diagonal.

across blocks fixed d=diagonal, b=block diagonal,
f= full block, m=mixed block
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Note that giving PRECON n will lead to use of no preconditioner.

Syntax:
PRECON <preconditioning information>

Example. Block diagonal preconditioner is used for the 4 within block effects. The
across blocks fixed effects have mixed block preconditioner where the first effect is in
block of its own and the others are in another block.

PRECON b b b b m

12.2.18 RANDOM

This command gives order numbers to the random effect names in the model line(s)
other than the additive genetic effect associated to pedigree. If this command is not
given, the only random effects are the additive genetic and the residual effects. Order
of the effects after this command gives numbering of the random effects.

Syntax:
RANDOM <effect names>

Example. There are four random effects: herd-test-month, permanent environment,
additive genetic, and residual. Data file has integer columns HTM for herd-test-month
and IDcode for individual ID code. In the model line, there are random effects HTM
for herd-test-month, PE (IDcode) for permanent environment, and G (IDcode) for
additive genetics. The numbers for random effects are 1 for HTM, 2 for PE, 3 for G, and 4
for the residual. These numbers are used in the (co)variance file defined by PARFILE.
The commnd has the random effects in their numbering order:

RANDOM HTM PE G
or alternatively
RANDOM HTM PE

In the latter case, G is known to be a random effect due to it been defined in the
PEDIGREE command to be associated with a relationship matrix, and such a random
effect has always random effect number just before the residual.

12.2.19 REGFILE

Regression covariable matrix file contains covariates of regression effects defined by
the REGMATRIX command. Commonly SNP genotype matrix is given as a regression
covariable matrix file.

Syntax:
REGFILE <filename>

Example. Regression covariates in file snp.dat
REGFILE snp.dat

12.2.20 REGMATRIX
Regression covariable matrix information. The information given:

« effect type:

FIXED Fixed effects,
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RANDOM Random effects with single common variance,
HETEROGENEOUS Random effects, each with its own variance
* name of the effect
« column numbers of covariates in the file defined by REGFILE:
ID = a Column number of individual code is a (optional),
FIRST = b The first column of covariates is b,
LAST = c The last columnis c.
» SNP marker information (optional):
— Reglndex:

REGINDEX = <col> Defines integer column name <col> or REGMATRIX
index in data file used to associate a data record with a line in a
REGMATRIX file.

— Imputation:
IMPUTE = <i> Missing (integer) marker value <i> to be imputed.
— Centering:
CENTER Average marker value.
CENTER = <r> Constant real value <r>, e.g., CENTER = 1.
CENTER = <file> Separate centering for markers in file <file>.
 Scaling (optional, default is no scaling):
SCALE = <r> Constant real value <r>, e.g., SCALE = 0.5.

2 ling with ———1——
pq Scaling with —7—=""—

marker values ().

SCALE

where p; = & are half of the mean

SCALE = m Scaling with ﬁ where m is the number of markers.

1

SCALE = <file> Separate scaling for markers in file <files.

SCALE

m2 Scaling with

» File format (optional, default is n):

FORMAT = n|m|s|pb File formatis n (or normal) for normal real valued regres-
sion coefficients with spaces separating columns, m (or markers) for SNP
markers of integer values '0’, ’1’, ’2” and optional missing value of TMPUTE
(with spaces separating columns), s (squeezed for “squeezed” SNP marker
values without separating spaces, or pb for binary PLINK .bed file format.

Optional minus sign prevents byte-packing of SNP matrices.

* preconditioner type (optional):
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PRECON = n|d|b Preconditioner type is n for none, d for diagonal (default),
or b for block diagonal. Block diagonal means trait block by REGMATRTIX
column.

See also commands REGFILE, REGPARFILE, REGTRAITS.

Syntax:

REGMATRIX <type> <name> [ID=<column>] FIRST=<column> LAST=<column>
[REGINDEX=<INTEGER column name>] [IMPUTE=<missing>]
[SCALE={<real value>|<filename>}] [FORMAT=<file format>]
[CENTER[={<real value>|<filename>}]] [PRECON=<preconditioner>]

Example. Regression matrix information: common random variance, name of the
effects is snp, covariates in columns 3 to 10, ID code on column 1. Block diagonal
preconditioner.

REGMATRIX RANDOM snp ID=1 FIRST=3 LAST=10 PRECON=Db

12.2.21 REGPARFILE
Variance components for a random regression matrix. See also commands REGFILE
and REGMATRIX.

Syntax:
REGPARFILE <filename>

Example. Variance components in file reg.par
REGPARFILE rep.par

12.2.22 REGTRAITS
Define the traits for this regression matrix (REGMATRIX).

Syntax:
REGPTRAITS <traits>

Example. Model has traits y1, y2 and y3, but only y1 has this REGMATRIX:
REGTRAITS vyl

12.2.23 RESTARTSOL

Make the restart solution file so1unf. The restart solution file allows the solver to start
iteration using old solutions. The default is no file is written. Command RESTARTSOL is
an option within MODEL command. The option is given on the same line as command
MODEL.

Syntax:
MODEL RESTARTSOL

Example. Restart solution files requested.
MODEL RESTARTSOL

12.2.24 RESIDFILE

Residual variance covariance matrix file in case of different residuals for different
observations. If residual file is given then data file must have an integer number column
associated with the residual matrix number. See command RESIDUAL. The default
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is that no additional residual variance file is used, i.e., the same residual (co)variance
defined in PARFTLE is used for all observations.

Syntax:
RESIDFILE <filename>

Example. Residuals are in file mi x99par.respar
RESIDFILE ./data/mix99par.respar

12.2.25 RESIDUAL

Name of integer number column in the data file indicating number of residual vari-
ance used for this observation (see RESTIDFILE). The default is that same residual
(co)variance is used for all observations.

Syntax:
RESIDUAL <integer column name>

Example. Residual variance number is on integer data column ResidualNumber.
RESIDUAL ResidualNumber

12.2.26 SCALE

The SCALE option is used under the MODEL command normalize or scale all observation
by ther residual standard deviation. When this option is used, all trait observations are
on a comparable scale. This can be useful when solving multi-trait models, as it may
lead to more stable and numerically efficient computations. Operation:

 each observation is divided by the residual standard deviation of its trait

« after the model is solved, all solutions are automatically rescaled back to their
original units before writing solutions to the files.

By default, no scaling is applied. To enable scaling, include the SCALE option on the
same line as the MODEL command.

Syntax:
MODEL SCALE

Example. Scaling is requested:
MODEL SCALE

12.2.27 SNPFILE

Defines a file having the SNP marker data where each marker is coded by the number
of a counted allele, i.e., having values 0, 1, or 2. The first column has the ID code.
The format for reading and the relevant columns having SNP markers are set in the
SNPMATRIX command. The SNP file is assumed to be a text file.

Syntax:
SNPFILE <filename>
Example. SNP marker data is in file SNP . dat

SNPFILE SNP.dat
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12.2.28 SNPMATRIX

Instructs to use the fully component-wise ssGTBLUP or the ssSNPBLUP model. A
marker file needs to be defined by the sNPrILE command. Options for the SNPMATRIX
command :

column number information:

FIRST = b First SNP marker column is b,

LAST = c Last SNP marker columnis c.

SNP marker data file format in SNPFILE:

FORMAT = m space separated SNP markers (default).

FORMAT = <format> Fortran format for reading data.

Centering of SNP markers:

CENTER = <r> Constant real value <r>, e.g., CENTER = 1.

CENTER = ’'p’ Centering using allele frequencies of markers inthe CENTERF I LE.

CENTER = ' £’ Centering using values in the CENTERFILE.

Used SNP marker memory storage mode:

USE

USE

BYTE Store one genotype to a byte (default).

PACK Pack several genotypes to a byte.

Scaling information (ssSNPBLUP model only): Assume the genomic relationship
matrix part is G = Z.BZ.. The diagonal scaling matrix B depends on the model
(GTA or GTe) defined by the ssSNPBLUP command. The matrix is B = I‘Twl for
GTA,and B = %I for GTe where the scaling constant & is computed:

1
2

7
8

SCALE = <r> (Constant real value <r>, e.g., SCALE = 15432.1.

SCALE = p Scaling with 2. p;(1 — p;) where p; are allele frequencies in the
CENTERFILE.

SCALE

m Scaling by m.
SCALE

m2 Scaling by 7.

SCALE = pm Scaling by 2pyar(1 — paprar)m where pyar is average minor
allele frequency in the CENTERFILE.

SCALE = no No scaling.

SCALE = dA Scaling such that tr(Z.BZ.) = tr(Ag,).

SCALE = one Scaling such that ¢r(Z.BZ.)/n equals one.

where Z. is the centered marker matrix, m is the number of markers and n is the
number of genotyped.

Marker weights (optional, ssSNPBLUP model only): Assume the genomic rela-
tionship matrix part is G = Z.BZ/ where Z. is the centered marker matrix. The
diagonal scaling matrix B depends on the weight matrix D and has the form
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B = 1D for GTA, and B = ;D for GTe where & is the scaling constant. The

weight matrix D can be:
1 DWEIGHT = M WEIGHTFILE has marker weights common to all traits.
2 DWEIGHT = T WEIGHTFILE has trait-specific marker weights.

When the sSCALE option is not specified, then the ssGTABLUP approach is used, and
it is assumed that an ICFILE is given as well. When the SCALE option is given, the
ssSNPBLUP model is used and no ICFILE command should be given.

Syntax:

SNPMATRIX FIRST=<column> LAST=<column> FORMAT=<file format>
CENTER={<real value>|'p’|’f’} [USE={BYTE|PACK} ]
[SCALE={<real value>|'p’|’'m’|'m2’ |"pm’ |'no’ |"dA’ |’one’ }]
Example. ssGTALUP model with 1000 space separated SNP markers in the file defined
by the SNPFILE command and using centering as if all allele frequencies were 0.5.

SNPMATRIX FIRST=2 LAST=1001 FORMAT='m’ CENTER=1

Example. ssGTABLUP model without space between SNP markers by a Fortran reading
format and using allele frequencies for centering in file defined by the CENTERFILE
command.

SNPMATRIX FIRST=2 LAST=1001 FORMAT=' (i2,1x,1000il)’" CENTER=p

Example. ssSNPBLUP model like the previous ssGTBLUP model but scaling uses a
constant computed using allele frequencies from the CENTERFILE.

SNPMATRIX FIRST=2 LAST=1001 FORMAT=' (i2,1x,1000il)" CENTER=p SCALE=p

12.2.29 SNPPARFILE

This command defines the file having heterogeneous marker variances in a ssS-
NPBLUP model. By default, all variances are assumed to have the same variance
as defined for the additive genetic effect. In SNPPARFILE, each marker has sparse
matrix variances with the usual notation of marker number, two matrix positions, and
the (co)variance.

SNPPARFILE VC_het.dat

12.2.30 SSGBLUP

Instructs to use the standard single-step ssGBLUP model where the inverse genomic
relationship matrix G! is given in a file. Note that the PEDIGREE and PEDFILE
commands are needed as well in the single-step model. The computations due to the
Ag—g1 matrix are performed by the solver. Thus, this command is the same as giving
IGFILE with the G file and TA22F I LE by option PEDIGREE.

The file formats available for the G—! matrix. The default format is co-ordinate sparse
matrix format having lower triangle elements only. Options include MIXED to allow both
upper and lower triangular elements in the sparse co-ordinate matrix, and LOWER for
the lower triangle dense matrix.

Syntax:

SSGBLUP [LOWER |[MIXED] <filename>

161

DEV



Command Language Interface for MiX99 (CLIM)

Example. Matrix G! is in file 1GL.bin
SSGBLUP LOWER iGL.bin

12.2.31 SSGTBLUP
Instructs to use the ssGTBLUP model where the inverse genomic relationship matrix
G~! has a genomic part and a regularization matrix C.

Note that the PEDIGREE and PEDFILE commands are needed as well as in any
single-step model. The computations due to the A;gl matrix are done by the solver.

Syntax:
SSGTBLUP [TAFILE|TEFILE] <filename>
Example. The T matrix of ssGTABLUP is in file TA.bin

SSGTBLUP TAFILE TA.bin

12.2.32 SSGTABLUP

Instructs to use the standard ssGTABLUP model of single-step as explained for TAFTLE.
This command is the same as giving TAFILE with the T 4 file and TA22FILE by option
PEDIGREE. This is the same as using command SSGTBLUP with option TAFILE.

Syntax:
SSGTABLUP <filename>
Example. Matrix T 4 is in file TA . bin

SSGTABLUP TA.bin

12.2.33 SSGTEBLUP

Instructs to use the standard ssGTeBLUP model of single-step as explained for TEF T LE.
This command is the same as giving the TEFILE command with the T, file and the
1A22FILE command with the option PEDIGREE. This is the same as using command
SSGTBLUP with option TEFILE.

Syntax:
SSGTEBLUP <filename>
Example. Matrix T, is in file Te .bin
SSGTEBLUP Te.bin

12.2.34 ssSNPBLUP

This command is used to inform the constant used in the ssSNPBLUP model and
requires the SNPMATRIX and SNPFILE commands. Two models equivalent to the
ssGTBLUP model are available

» The ssGTABLUP model needs the residual polygenic proportion.
» The ssGTeBLUP model needs the small value (e.g., 0.01) for the regularization.

The models are indicated by GTA for ssGTABLUP and GTe for ssGTeBLUP. The
ssSNPBLUP command can be optionally used to give the name of the marker genotype
file such that the sNPFTLE command need not be given. Note that this command
requires giving the SCALE option in the SNPMATRIX command.
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Syntax:
SsSNPBLUP [GTA|GTe] <value> [<SNP marker file>]
Example. Define the residual polygenic proportion to be 20%.

SsSNPBLUP GTA 0.20

12.2.35 TABLEFILE
Name of covariable table file. See TABLEINDEX command. The default is no table
index file is needed.

Syntax:
TABLEFILE <filename>
Example. Covariable table file is FinTDMpara. cov.

TABLEFILE FinTDMpara.cov

12.2.36 TABLEINDEX
Name of integer number column in the data file indicating column for table index. The
default is no table index. See TARLEFTLE.

Syntax:
TABLEINDEX <integer column name>

Example. Index for the covariable table file is on the integer number column DIM. in the
data file.

TABLEINDEX DIM

12.2.37 TAFILE

Gives file having the T4 matrix in G™' = ((1 — w)Z.BZ, + wA,,) ' = +A ' - T/, T,
used by the ssGTABLUP model of the single-step method where w is the residual
polygenic proportion, Z. is the centered marker matrix, and B has the scaling informa-
tion. The approach requires the A " matrix to be given separately using the command

IA22FILE, e.g., by TA22FILE PEDIGREE.

The format of the T 4 matrix file is like the lower triangle dense matrix format. However,
the T 4, matrix is a rectangular matrix. The T 4 matrix file has to be made by a special
preprocessing program such as T48eig_make.

Syntax:
TAFILE <filename>

Example. Matrix T4 isinfile TA.bin
TAFILE TA.bin

12.2.38 TEFILE

Gives file having the T. matrix in G™* = (Z,BZ. + ¢I)"! = 1I — T.T, used by the
ssGTeBLUP model of the single-step method where ¢ is a small number such as 0.01,
Z. is the centered marker matrix, and B has the scaling information. The approach
requires the A_ matrix to be given separately using the command TA22FTLE, e.g., by

IA22FILE PEDIGREE.
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The format of the T, matrix file is like the lower triangle dense matrix format. However,
the T, matrix is a rectangular matrix. The T, matrix file needs to be made by a special
preprocessing program such as T48eig_make.

Syntax:
TEFILE <filename>

Example. Matrix T, is in file Te .bin
TEFILE Te.bin

12.2.39 TITLE
Line for title of the analysis. The default title is:
MiX99 preprocessing time&date: <current time and date>

Syntax:
TITLE <Title of the analysis>
Example.
TITLE The new multi-trait model for yield

12.2.40 TMPDIR
Directory for temporary files. The default is the current directory.

Syntax:

TMPDIR <directory>
Example.

TMPDIR ./tmpMiX

12.2.41 TRAITGROUP
Name of integer number column for the trait group.

Syntax:
TRAITGROUP <integer column name>

Example. Trait group is in integer number column trait.
TRAITGROUP trait

12.2.42 WEIGHTFILE

This command allows using marker-specific weights in a file for an ssSNPBLUP model DEV
when DWEIGHT option has been given in the SNPMATRIX command. By default, all
variances are assumed to have the same weight of one.

WEIGHTFILE VR_weights.dat

12.2.43 WITHINBLOCKORDER

Ordering of effects within block. Order of effect after the command name gives the
ordering. The default is that only the individual additive genetic effect is a within block
effect. If the model has no such, then the last model effect.

Syntax:

WITHINBLOCKORDER <effect names>
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Example. There are three effects within block. Order of effects within block: 1=G, 2=PE,
3=HerdXyear.

WITHINBLOCKORDER G PE HerdXyear

12.2.44 ZCFILE

Gives file having the centered marker matrix Z. matrix in the basic component-wise ss-
GTBLUP model of the single-step method. Note: the fully component-wise ssGTBLUP
can be computationally more efficient as it does not require this file. For example, in ss-
GTABLUP, G™! = ((1-w)Z.BZ,+wA,y) ' = LA —-5 A 'Z,C'Z A, where wisthe
residual polygenic proportion, B has scaling informationand C~' = (£ Z,A_'Z.+B~')"".
The command requires giving the TCF1LE command having C~!. The Z. matrix file can
be made by a special preprocessing program such as T48eig_make. The approach
requires the Ag—g1 matrix to be given separately using the command T222F T LE within
option PEDIGREE.

Syntax:

ZCFILE <filename>
Example. Matrix Z. is in file Zzc . dat

ZCFILE Zc.dat
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13 Appendix: Quick reference card

The following commands are necessary. Options are in square brackets [ ]. Syntax and
short explanation of the required commands are in Chapter 12.1 except for command
MODETL which is considered separately in Chapters 6, 7, 9 and 11. Note that in CLIM
and in the following, symbol s’ is continuation to the next line.

DATAFILE [TEXT | BINARY] <FileName>
INTEGER <column names>
REAL <column names>

PARFILE <FileName>

DATASORT BLOCK=<block in INTEGER> PEDIGREECODE=<code in INTEGER>

MISSING <value for missing real number data>

NORANSOL <random effect numbers without solution file>
PARFILE <filename>

RANDOM <random effect names>

REGFILE <filename>

REGPARFILE <filename>

REGMATRIX <type> <name> [ID=<column>] FIRST=<column> [LAST=<column>]
[REGINDEX=<INTEGER column name>] [IMPUTE=<missing>]
[SCALE={<real value>|<filename>|2pg|m|m2}] [FORMAT=<file format>]

[CENTER[={<real value>|<filename>}]] [PRECON=<preconditioner>]
RESIDFILE <filename>
RESIDUAL <INTEGER column name of the residual variance number>
SSGBLUP [LOWER |MIXED] <filename>

TABLEFILE <filename>

TABLEINDEX <table index INTEGER column name>
TITLE <title of analysis>

TMPDIR <directory>

TRAITGROUP <trait group INTEGER column name>
WITHINBLOCKORDER <Effect names in the order>
DEFINE <macro name> <replacement text>

13.1 Reserved and special characters
Special symbols that can’t be used in user defined names like data file column names:

#  start for comment

&  symbol for line continuation

string in between the apostrophes is read un-
changed

! options follow (on the model line)

( ) parenthesis used on model ling(s)
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directive file, 1, 2, 3, 3, 59, 70, 130
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SNPMATRIX, 161
DYD
= 149
PEDFILE, 149
DYD, daughter yield deviation, 27, 28,
127,127,128

eHat .data (1), 26, 31
EM REML, 135
EM, Expectation Maximization
for estimation of variance
components, 135
estimation of variance components, 22,
28,135
changing parameters during
estimation, 22, 136
continuing estimation, 28, 139, 139
restarting estimation, 139, 140
stopping evaluation, 136
exa9%99,1,1, 10, 143, 145, 146
executing CLIM, 3

FACTOR, 27, 27
FILE, 94, 149, 149
= 94, 150, 166
file format
Solani, 32
SolDGVnn, 33
Solfnn, 33
Solfix, 32
SolMs, 32
SolPA, 32
Solrnn, 33
Solreg, 33
Solreg_mat, 33
SolSNP, 34
files, 10
covariable tables, 51, 151
data, 11
genotypes, 12
multi-trait data, 11
multiple residual (co)variances, 17
old solutions, 34
Solunf, 34
Solvec, 34
pedigree, 12
regression matrix, 72
solution files, 32
Sol_mn, 32
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Solfnn, 33
Solfix, 32
SolMs, 32
SolPA, 32
Solrnn, 33
Solreqg, 33
Solreg_mat, 33
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Tmpfile.par, 15
variance components, 14
FINBR
= 41, 42,100, 108, 109, 112, 113,
115,117,119, 154
FIRST
= 75-82, 84, 85, 88, 115-120, 155,
158, 161, 166
PARALLEL, 155
REGMATRIX, 157
FIXED
= 76, 79
REGMATRIX, 156
fixed regression model, 47
fixed variance components, 28, 138
FORMAT, 80, 157
== 80, 84, 85, 88, 115-120, 158,
161, 166

GBLUP, 20, 94, 95, 103, 104, 107, 152
= 94, 95, 97, 98, 101, 152
LOWER, 94, 149, 152, 153
MIXED, 94, 94
generating observations, 27
genetic covariance matrix, 5, 6, 56, 61,
65, 127
genomic breeding value, 75, 75, 96, 100
genomic marker effect, 72, 72
genotype file, 12

HETEROGENEOUS
= 78, 81
REGMATRIX, 157
heterogeneous residual variance, 42,
54
weights, 11, 42, 96
heterogeneous variance, 21, 22, 26
heterogeneous variance adjustment, 23,
28, 29, 30
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hginv, 93, 93, 121

I/O buffer size, 155
TA22FILE, 108, 152, 152—154,

161-163, 165
= 108, 112, 114, 115, 117, 119,
153
ICFILE, 111, 114-118, 125, 153, 161,
165
5 113-116, 153
1D, 72,73,157
= 73, 75-82, 84, 85, 88, 154, 158,
166
IDD, 26, 28
IDD.data (1), 26,31
IDENTITY
15
IGAMMAFILE, 123, 153
1 123, 153
IGFILE, 108, 153, 153, 161
" 108, 153

THPRECON, 109, 113, 154, 154
=109, 113, 154
imakedapax, 1
imake99,1
imputation, 80, 157
IMPUTE, 80, 157
== 80, 158, 166
INBREEDING, 41, 154
= 41, 42,100, 108, 109, 112, 113,
115,117,119, 154
inbreeding coefficient, 41, 99, 106, 107,
154
inbreeding coefficient file, 99, 154, 154
INBRFILE, 41, 108, 154
= 41, 42,100, 107, 109, 112, 113,
115,117,119, 154
incidence matrix, 5, 43, 90, 98, 105
individual daughter deviation, 26, 28, 31
information matrix, 140
instruction file, 1, 39-41, 53, 58, 59
CLIM command file, 1
directive file, 136, 136
exa99, 143
solver option file, 22, 23, 23, 135,
138, 139
INTEGER, 4, 17, 34, 147, 148, 151
= 4,12, 35-39, 4246, 50, 53, 54,
57, 58, 62, 64, 66, 67, 69, 74,
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76,79, 81, 83, 85, 88, 95,
97-99, 101, 103, 104, 107, 109,
112,113, 115,117, 119, 126,
128, 131, 132, 134, 148, 151,
152, 158, 166
integer number column, 11, 33, 34, 43,
47, 48, 54, 63, 64, 147, 148,
151, 158, 159, 163, 164
intercept, 48, 48, 51
|OD, iteration on data, 7
ITER, 22, 22, 136
ITER.LOCK, 22, 22
ITER.OLD, 22
iteration on data, 7
iterative method, 7, 22, 65, 130
changing parameters during
iteration, 22
intermediate results, 21
interrupting, 21
maximum number of iterations, 7,
18, 22, 25

lactation curve, 47, 51
lactation model, 67
LAST
= 75-82, 84, 85, 88, 115-120, 158,
161, 166
REGMATRIX, 157
line continuation, 4, 34
LOWER
COVFILE, 150
= 38, 88, 94, 95, 97, 98, 100, 101,
103, 104, 107-109, 119,
149-153, 161, 162, 166
IGFILE, 153
PEDFILE, 149
LS-model, 32

MACE model, 127, 127, 139

macro, 151

macro and range abbreviations, 53, 71,
151

maternal effects model, 55, 67, 69

MC, Monte Carlo, 135

MC EM REML, 22, 28, 29, 135, 137,
138

MEA, 24, 116

mean model, 21, 21

MEB, 20, 24, 24, 25, 116
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MEL, 20, 24, 24, 114, 116
MEM, 20, 24
memory requirements, 7, 14, 19, 123
Mendelian sampling deviation, 32
SolMs, 32
MES, 20, 21, 24
metafounders, 122, 153
MISSING, 2, 11, 35, 147, 155
= 35-38, 42, 74, 76, 79, 81, 83, 85,
88, 95, 97-99, 101, 103, 104,
109, 112, 113, 115, 117, 119,
128, 134, 155, 166
missing effect, 58, 59
missing marker value, 76, 80, 80
missing observation, 125
missing parents, 13
missing value, 26, 26, 31
integer number column, 11
real number column, 11, 155
MixX99_DIR.DIR, 3, 3, 27, 30, 59, 60,
136
MiX99_ IN.DIR, 136
MiX99_IN.OPT, 136
mix99hv, 29
mix991i,1,1, 3,10, 26, 29, 31, 44, 71,
108, 111, 113, 120, 125, 135,
136, 139, 142, 149, 152, 155
mix99p,1,7,8,13,17,17, 20, 23, 26,
29, 31, 111
mix99s,1,7,10,17,17,18, 23, 24,
26-29, 31, 87, 108, 111, 118,
121,129, 130, 135, 136, 138,
139, 142
MIXED
= 15, 94, 123, 149, 152, 153, 161,
166
IGFILE, 153
PEDFILE, 149
mixed model equations, 5, 6-8, 91, 129
MME, 5, 18, 25
solving, 6
MIXPATH, 29, 135, 136, 142
MiXtoolmerge.f90, 31
MiXtoolms.f90,31
MiXtools, 31, 31
MODEL, 4, 27, 30, 31, 34, 144, 147, 148,
158, 159, 166
= 4, 3639, 4245, 47, 50, 53-60,
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62, 64, 66-71, 75, 76, 79, 81,
84, 85, 88, 95, 97, 98, 100, 101,
103, 104, 108, 109, 112, 113,
115,117,119, 126, 128, 131,
132, 134, 152, 158, 159, 166
model validation, 31
models
animal, 4, 4
basic component-wise ssGTBLUP,
111,111, 113-115, 123, 165
fully component-wise ssGTBLUP,
111,112, 114, 114, 116, 123,
160
GBLUP, 72, 90, 90, 95, 97, 98, 101,
149, 152
genomic data model, 2, 72
genomic evaluation, 72
maternal trait, 55
multi-trait, 67
multi-trait, 6, 58
old Finnish test-day, 67
order of effects, 48, 68
random regression, 47
reduced rank random regression, 63
reduced rank two-trait test-day, 65
repeatability, 43
single trait, 2, 4
sire, 46
SNP-BLUP, 72, 72, 83, 85, 90
ssGBLUP, 106, 161
ssGTABLUP, 110, 117, 125, 162,
163, 165
ssGTBLUP, 24, 25,110, 110, 162
ssGTeBLUP, 110, 112, 113, 117,
118, 125, 162, 163
ssSNPBLUP, 25, 110, 116,
123-125, 160-162, 164
standard ssGBLUP, 106, 109, 110,
121, 123-125
standard ssGTBLUP, 111, 111, 113,
121
varietal, 4
Monte Carlo, 135
multi-threading, 20, 20, 23, 24
nt, 20
multi-trait model, 2, 6, 8, 13, 16, 58, 58,
63, 125, 127
multi-trait sire model, 127, 132
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multiple residual variance matrices, 17,
138, 141, 142

multiplicative mixed model, 21, 29, 30

mxntra, 26, 31

nesting, 2, 5, 36, 47, 48, 48, 50, 55
New features (NEW), ii, 15, 16, 75, 83
nocov, 23
NORANSOL, 148, 155

= 155, 166
number of data samples, 28, 137, 139

old solutions, 158
Solunf, 34
Solvec, 34

optional commands, 147, 150

PACK
= 116, 161
PARALLEL, 155
= 155
parallel computing
MPI, 1, 8, 13, 14, 21, 22, 26, 31,
155
multi-threading, 20, 24
workload division, 155
parent average, 32
SolPAa, 32
PARFILE, 15, 38, 44, 58, 61, 70, 74,
84, 85, 95, 105, 120, 136, 139,
141, 147, 148, 156, 159
CLIM, 15
DIAGONAL, 16
= 4,15, 38, 39, 42, 45, 47, 50, 53,
54,57, 58, 62, 64, 6669, 75,
76,79, 81, 84, 85, 88, 95,

97-99, 101, 103, 104, 108, 109,

112,113, 115,117, 119, 126,
128, 131, 132, 134, 148, 166
file name, 15
IDENTITY, 15,16
LOWER, 16, 16
MIXED, 15, 15-17, 50, 56, 62, 66,
69, 70
SPARSE, 16, 16
parfile, 139, 140, 141, 142
PCG, 6, 7, 8, 19, 25, 101, 109, 116,
127,130
preconditioner, 8, 108, 154
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PEDFILE, 94,101, 108, 112, 147, 149,
149, 152, 161, 162
= 4,13, 39, 42, 45, 46, 50, 53, 54,
57, 58, 62, 64, 66—69, 85, 94,
100, 107, 109, 112, 113, 115,
117,119, 126, 128, 131, 132,
134, 149-152, 166
PEDIGREE, 40, 44, 48, 68, 94, 103,
121, 147,149, 149, 150, 156,
161, 162
= 4, 39, 40, 4245, 47, 50, 53-58,
62, 64, 66—69, 85, 94, 100,
107-109, 112-115, 117, 119,
126, 128, 131, 132, 134, 149,
150, 153, 166
IA22FILE, 152
THPRECON, 154
pedigree BLUP, 4, 4, 35
pedigree file, 11, 12, 13, 40, 46, 47, 50,
56, 128, 147, 149
PEDIGREECODE, 14, 151
= 39, 41, 42, 45,58, 73, 75, 76, 79,
81, 84, 85, 95, 97-101, 108,
109, 112, 113, 115, 117, 119,
134, 151, 154, 166
PEEK, 21, 21
permanent environment effect, 43, 45,
56, 65, 67
permanent environment variance, 43,
56, 63
PEVrnn, 146
polygenic effect, 98, 100
PRECON, 8-10, 148, 155
= 8, 156, 158, 166
REGMATRIX, 158
preconditioned conjugate gradient
method, 6, 7
preconditioning, 8, 18, 25, 136, 148,
155
across block fixed effects, 9
across block random effects, 10
block diagonal, 155
second-level, 8, 10, 87, 118
single-step, 108
ssSNPBLUP, 118
updating, 29
within block effects, 8
predicted observations, 26, 31
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prediction error variance
exact, 143
Monte Carlo, 142
preprocessor, 1, 40

RAM, 23
RANDOM, 14, 44, 94, 99, 100, 147, 156
=5 44, 45, 56, 57, 67-69, 73, 75-80,
82, 84, 85, 88, 95, 100, 103,
104, 156, 158, 166
REGMATRIX, 157
random regression function, 49, 60, 61
random regression model, 1, 15, 47, 49,
50, 54-56, 60
multi-trait, 15, 60
random_seed, 29
range expansion, 54, 151
rank reduction, 65
RDB, 24, 24
RDL, 24, 24
RDM, 24, 24
RDS, 24, 24
RDU, 24
RDX, 24
REAL, 4, 34, 35, 147, 150, 151
= 4,12, 35-39, 42-46, 50, 53, 54,
57, 58, 62, 64, 66-69, 74, 76,
79, 81, 83, 85, 88, 95, 97-99,
101, 103, 104, 107, 109, 112,
113,115, 117, 119, 126, 128,
131, 132, 134, 150-152, 166
real number column, 11, 11, 34, 48, 150
reduced rank model, 65
reduced rank random regression
models, 63
REGFILE, 12, 72-74, 76, 80, 83, 87,
147,156, 157, 158
=5 75, 76, 79-82, 84, 85, 88, 156,
166
REGINDEX, 72, 157, 157
5 84, 85, 88, 158, 166
REGMATRIX, 10, 12, 20, 32, 33, 72-77,
79-87, 90, 95, 104, 119, 143,
147,156, 156, 158
=5 73, 75-82, 84, 85, 88, 158, 166
FIRST, 75,157
FIXED, 72, 156
HETEROGENEOUS, 72, 157
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LAST, 75,157
RANDOM, 72, 157
regression covariable matrix, 156
SCALE, 157
solutions, 32
REGPARFILE, 72,74,77,78, 82, 147,
158, 158
= 75,76, 78,79, 81, 82, 84, 85, 88,
158, 166
regression covariable matrix, 156
regression effect, 5, 5, 32, 34, 47
regression matrix, 72, 72, 74, 87, 147
REGTRAITS, 75, 84, 85, 158, 158
iz 85, 158
relationship matrix
combined, 106
combined genomic and
pedigree-based, 101
Fortran unformatted binary, 93
genomic, 5, 72, 90, 91, 94,
100-102, 106, 107, 152
inbreeding coefficient, 41
maternal effects model, 55
maternal grand sire, 47
pedigree-based, 5, 41, 56, 98, 100,
101, 106, 107
residual polygenic proportion, 101,
107,110, 113, 115, 117, 118,
124, 153, 162, 165
stream, 93
VanRaden method, 95, 107
RelaX2, 11, 41, 123
reliabilities
approximate, 1
exact, 143
REML, 28, 29, 135, 136—139, 141
stopping criterion, 29
REML1og, 139, 141, 141, 142
repeatability model, 43, 48, 63, 63, 125
repeated observations, 49, 51
required commands, 147, 148, 166
reserved characters, 34, 166
resfile, 142
RESID, 25, 31
RESIDFILE, 17, 54, 139, 142, 147,
158, 159
== 55, 159, 166
RESIDUAL, 54, 147, 158, 159
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== 55, 159, 166
residual covariance matrix, 5, 6, 17, 61,
63, 65, 127
residual variance, 43, 49, 63
residuals, 23, 25, 26, 28, 31
restart solution file, 158
RESTARTSOL, 34, 158
= 158, 166

SCALE, 159
= 78,79, 82, 84, 85, 88, 117-120,
158, 159, 161, 166
REGMATRIX, 77-79, 81, 82, 157
SNPMATRIX, 160
scaling of SNP markers, 76
second-level preconditioner, 10, 23
SEED, 27, 29, 135, 136, 142
SEfnn, 146
SEfix, 146
SEreg, 146
sHat.data (1), 26,31
simulating observations, 27
single-step method, 2, 20, 23, 24, 35,
72,105, 107, 143, 153, 154,
163, 165
altered QP transformed H-inverse,
121
APY, 110
basic component-wise ssGTBLUP,
111
CHM, 24, 25
full QP transformed H-inverse, 121
fully component-wise ssGTBLUP,
114
IM, 23
IOP, 23
marker weighted ssSNPBLUP, 119
PAR, 24
ssSNPBLUP, 116
standard ssGBLUP, 106
standard ssGTBLUP, 111
summary table, 124
sire model, 46, 46, 47
SiWi.data (i), 29
sm, 149
= 47
sm+p
= 128,131, 134
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SNP marker, 72, 73, 74, 76, 90
byte-packing, 115, 123
SNPFILE, 12,111, 114-116, 150, 159,
160—-162
i 115-120, 159
SNPMATRIX, 12,20, 111, 115-117,
150, 159, 160, 162, 164
CENTER, 115, 160
DWEIGHT, 120, 160
1 115-120, 161
FIRST, 115,116, 160
FORMAT, 115, 116, 160
LAST, 115,116, 160
SCALE, 116, 117,160, 162
USE, 115, 160
SNPPARFILE, 119, 161
= 119, 161
Sol_mn, 32
Solani, 32,32, 40, 41, 43, 46, 47, 51,
55, 57, 59-62, 64, 66, 86,
94-98, 100, 101, 108, 126, 129,
131,132, 134
file format, 32
SolDbGVnn, 32, 33, 84, 86, 90
file format, 33
Soldyd, 27
Solfnn, 32,33, 36-39, 75, 79, 82
file format, 33
Solfix, 32, 32, 3638, 40, 41, 43, 45,
47,51, 55, 57-60, 62, 64, 66,
84, 86, 89, 95-98, 100, 101,
103, 105, 108, 126, 128, 131,
132,134
file format, 32
SolMs, 32, 32
file format, 32
Solold, 34
SolPA, 32, 32
file format, 32
Solrnn, 32, 33, 45, 57, 84, 86, 89, 96,
100, 103—-105
file format, 33
Solreg, 32, 33, 36-38, 51, 53, 55, 62,
66
file format, 33
Solreg_mat, 32, 33, 75, 79, 82, 84,
86, 89
file format, 33
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SolSNp, 32,34, 111,115,118
file format, 34
SOLTYP, 30, 135
Solunf, 34, 34, 158
solution files, 2, 32
Mendelian sampling deviation, 32
parent average, 32
Solvec, 19, 34, 34
solver, 1, 8,17, 20, 32, 34, 40, 135
sp, 23

SSGBLUP, 20, 103, 106-108, 112, 121,

153, 161
= 107, 109, 161, 162, 166
LOWER, 107, 161
MIXED, 107,161
SSGTABLUP, 162
= 162
SSGTBLUP, 111, 112, 162, 162
= 112, 113, 162
SSGTEBLUP, 162
= 162
ssSNPBLUP, 10, 116-118, 160, 162
= 117-120, 163
ssSNPBLUP GTA, 117
ssSNPBLUP GTe, 117
standard error
exact, 143
Monte Carlo, 142
standard errors
for fixed effects, 146
for variance components, 139
STOP, 22, 25, 29
sTop, 21, 136
STOPC, 22, 30
STOPE, 22, 28, 135-139, 142
stopping iteration, 21
sum of selected model factors, 26, 31

T48eig_make, 121, 153, 163—-165

TABLEFILE, 51, 53, 147, 163, 163
== 53, 54, 67, 163, 166

TABLEINDEX, 51, 53, 147, 163, 163
= 53, 54, 67, 163, 166

TAFILE, 121,125, 162, 163
=112, 162, 163

TEFILE, 121,125, 162, 163
=112, 162, 164
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temporary files, 148, 164
test-day model, 47, 49, 51, 52, 61, 67
TEXT

= 148, 166
text file, 11
threshold-model, 22, 25
TITLE, 148, 164

= 128, 134, 164, 166
TMPDIR, 2, 109, 148, 164

= 152, 164, 166
trait group, 125, 125, 127, 164
TRAITGROUP, 126, 147, 164

= 126, 128, 164, 166

unknown parent group, 13, 40, 121, 122,
127,129, 131, 132, 134, 149
USE
= 116, 161

VALID, 26, 30, 31
variance component estimation
maximum number of iterations, 139

variance components, 7, 14, 14, 16, 17,
46

variance model, 21, 29, 30

VAROPT, 27, 28, 28, 30, 135, 136, 138,
139, 142

veel, 140, 142

vceSE, 140, 142, 142

WEIGHT, 42

42,97, 128, 131, 132
WEIGHTFILE, 120, 161, 164

5 120, 164
within block effect, 7, 155, 156, 164
within block fixed effect, 32, 32
WITHINBLOCKORDER, 7, 8, 36, 148,

164
15" 164—166

YD, yield deviation, 26
YD.data (1), 26, 31

yHat .data (1), 26,31
yHat .data0, 75, 96

yield deviation, 23, 26, 28, 31
ySim.data0, 27

ZCFILE, 111, 114,153, 165
113, 114, 165
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