Threshold model

Model description

This example is from Gianola and Foulley: Sire evaluation for ordered categorical data with a threshold model (GSE, 15:201-224, 1983).

The model is:

$$\lambda_{v} = Xb + Zs + e_{r}$$

where

 λ_y is vector of liability variables for calving ease observations,

b is vector of fixed herd times year interaction, age of dam and sex of calf effects,

X is design matrix to link observations to appropriate fixed effects,

s is vector of random additive genetic sire effects,

Z is design matrix to link observations to appropriate random effects, and

e is random residual vector.

It is assumed that $var(s) = A\sigma_s^2$, $var(e) = I\sigma_e^2$ and cov(s, e) = cov(e, s) = 0, where **A** is the numerator relationship matrix for sires. Further, it is assumed that thresholds are known (t₁=0.3753 and t₂=1.0113 according to Gianola and Foulley).

The variance components are $\sigma_s^2 = .05263$ and $\sigma_e^2 = 1$.

Input files

Datafile:

The data file contains information on the data to be analyzed together with class and regression variables for the model. The data file can be in free format (columns are separated by at least one space) or in binary format.

Each record, i.e., line in a free format file, has been divided to two parts: 1) Integer number columns and 2) real number columns. Columns of real numbers are always after the integer number columns.

THR.dat

```
1 2 1 1 1
1 2 2 1 1
1 3 1 1 1
1 2 2 2 2 2
1 3 1 2 1
1 3 2 2 1
1 3 2 2 1
1 3 2 2 1
1 3 2 2 1
1 3 2 2 1
1 3 2 2 1
1 3 2 2 1
1 3 2 2 1
1 3 2 2 1
1 3 2 2 1
1 3 2 2 1
```

Column 1: Herd x Year (integer)
Column 2: Age of dam (integer)
Column 3: Sex of calf (integer)
Column 4: Sire (integer)
Column 5: Calving ease (real)

Pedigree file:

All the pedigree information must be given in the pedigree file. Each animal in the pedigree must have a record with four integers of which the forth integer is optional.

THR.ped

Column 1: Animal ID Column 2: Sire ID Column 3: Dam ID

Variance component file:

The variance components file has variances and covariances for all the random effects in the model. The variance component file has a line for each (co)variance. Each line has 3 integers followed by a real number (the (co)variance value). The first integer is the random effect number followed by the row-column combination, and, finally, the (co)variance parameter. Order of lines in the file is irrelevant.

THR.var

```
1 1 1 .052631579 # Genetic variance
2 1 1 1. # Residual variance must be one
```

Command file:

Threshold model can be given to mix99i only using the old directive method; this model can not be given using CLIM instructions. Everything beyond '#' sign is considered as a comment.

```
# TITLE:
Gianola & Foulley. 1983. GSE 15:201-224, EM algorithm, fixed thresholds
# INT-VAR:
      herd_year dam_age calf sex sire
# REAL-VAR:
       calv ease
# TRAITS:
# TRGRP:
# SORT R: Block sorting variable, Relationship code sorting variable
# FIXRAN: Number of different fixed and random effect
# MODEL:Sgr, trait, W,
      1 T2 1 - 1234
# THR METHOD:
       em ft
# FIXED THRESHOLDS:
      .3753 1.0113
# BLKORD: Order of effects within herd
# RANDOM:
      1
# PEDIGR: number: sire
    1 1
# REGRES: VL, VLSITE, VLSITdate, VLSP, vltank, anim
   4 cl cl cl cl
# COMBINE:
    n
# RELMET:
# INPFIL:
      THR.dat
# VAR:
      4 1 f
# MISSVA:
      -9
# SCALE:
  n
# PEDFIL:
      THR.ped
# PARFIL:
      THR.var
# TMPDIR:
# SOLFOR:
# SOLUNF:
# PRECON: WpW, XpX
# NPROC: Number of processors used by the solver program
# COMBLK: Number of blocks in common area when parallel processing used
      0
```

Solver option file:

Everything beyond '#' sign is considered as a comment.

THR.stop

Solution files

Structure of the formatted solution files depends on the model. Therefore, explanation of the content of those files is given in the printout of the particular run of the program.

Solver option file for threshold model analysis has been given in 'Input files for Example 8'.

"Solfix"-file contains solutions for fixed effects.

Fact. Trt	Level N	Obs Solution	Factor Trait herd_yea calv_eas
1 1 2 1	2 2	15 0.29746 13 0.0000	herd_yea calv_eas dam age calv eas
2 1 3 1	3 1	1512691 1419690E-	dam_age calv_eas calf sex calv eas
3 1	2	1439079	calf_sex calv_eas

Column 1: Factor number

Column 2: Trait number

Column 3: Level code

Column 4: Number of observations

Column 5: Solution

Column 6: Name of factor

Column 7: Name of trait

"Solani"-file contains solutions for genetic animal effect.

```
1 0 7 -.81533E-01
2 0 9 0.65485E-01
3 0 6 0.12279
4 0 6 -.10674
```

Column 1: Animal ID

Column 2: Number of descendants

Column 3: Number of observations

Column 4: Solution for trait 1 calv_eas and factor sire