Parallel processing

Model description

This example is given by Schaeffer & Dekkers: Random regressions in animal models for test-day production in dairy cattle (Proc. 5th WCGALP, 18:443-446, 1994).

The single trait random regression animal model has the form:

$$\mathbf{y} = f_1(\mathbf{p}, \mathbf{DIM}) + \mathbf{Xb} + f_2(\mathbf{a}, \mathbf{DIM}) + \mathbf{e}$$

where,

y is vector of milk yield observations,

 $f_1(\mathbf{p}, \mathbf{DIM})$ is fixed general regression function,

b is vector of fixed herd times test-day interaction effects,

X is design matrix to link observations to appropriate fixed effects,

 $f_2(\mathbf{a}, \mathbf{DIM})$ is random additive genetic regression function, and

e is random residual vector.

The fixed regression function has form

$$f_1(\mathbf{p}, DIM) = DIM \cdot p_1 + \ln(305/DIM) \cdot p_2$$

and the random regression function f for animal i has form

$$f_2(\mathbf{a}_i, DIM) = a_{i,1} + DIM \cdot a_{i,2} + \ln(305/DIM) \cdot a_{i,3}$$
.

It is assumed that $var(\mathbf{a}) = \mathbf{A} \otimes \mathbf{G}_0 = \mathbf{G}$, $var(\mathbf{e}) = \mathbf{I}\sigma_e^2 = \mathbf{R}$ and $cov(\mathbf{a}, \mathbf{e}) = cov(\mathbf{e}, \mathbf{a}) = \mathbf{0}$, where \mathbf{G}_0 is 3 \times 3 -matrix of variance and covariance components for random animal effects and \mathbf{A} is the numerator relationship matrix.

The variance components are

$$\mathbf{G}_0 = \begin{bmatrix} 44.791 & -0.133 & 0.351 \\ -0.133 & 0.073 & -0.010 \\ 0.351 & -0.010 & 1.068 \end{bmatrix}$$

and $\sigma_e^2 = 100$.

Input files

Datafile:

The data file contains information on the data to be analyzed together with class and regression variables for the model. The data file can be in free format (columns are separated by at least one space) or in binary format.

Each record, i.e., line in a free format file, has been divided to two parts: 1) Integer number columns and 2) real number columns. Columns of real numbers are always after the integer number columns.

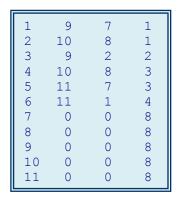
RRM.dat

1	1	1	73.0	1.4298500	26.0
2	1	1	123.0	0.9081270	23.0
3	1	1	178.0	0.5385280	21.0
1	2	1	34.0	2.1939499	29.0
2	2	1	84.0	1.2894900	18.0
3	2	1	139.0	0.7858380	8.0
4	2	1	184.0	0.5053760	1.0
1	3	2	8.0	3.6408701	37.0
2	3	2	58.0	1.6598700	25.0
3	3	2	113.0	0.9929240	19.0
4	3	2	158.0	0.6577170	15.0
5	3	2			
			218.0	0.3358170	11.0
2	4	3	5.0	4.1108699	44.0
3	4	3	60.0	1.6259700	29.0
4	4	3	105.0	1.0663500	22.0
5	4	3	165.0	0.6143660	14.0
6	4	3	215.0	0.3496740	8.0
4	5	3	14.0	3.0812500	35.0
5	5	3	74.0	1.4162500	23.0
6	5	3	124.0	0.9000300	17.0
5	6	4	31.0	2.2863200	28.0
6	6	4	81.0	1.3258600	22.0
6	3	4	268.0	0.1293250	7.0

Column 1: Herd x Test-day (integer)

Column 2: Animal ID (integer) Column 3: Block code (integer)

Column 4: Covariable for regression effect, days in milk (real)


Column 5: Covariable for regression effect, In(305/days in milk) (real)

Column 6: Milk yield (real)

Pedigree file:

All the pedigree information must be given in the pedigree file. Each animal in the pedigree must have a record with four integers of which the forth integer is optional.

RRM.ped

Column 1: Animal ID Column 2: Sire ID Column 3: Dam ID Column 4: Block code

Variance component file:

The variance components file has variances and covariances for all the random effects in the model. The variance component file has a line for each (co)variance. Order of lines in the file is irrelevant.

RRM.var

1 1	1 2	1 1	44.791 -0.133
1 1 1	3 2 2	1 2 3	0.351 0.073 -0.010
1 2	3	3	1.068

Column 1: Random effect number (integer)

Column 2: Row index (integer)
Column 3: Column index (integer)
Column 4: (Co)variance value (real)

Command file:

Number of processors should be given for parallel runs. This can be given only using the old directive method; this cannot be given using CLIM instructions. Everything beyond '#' sign is considered as a comment.

RRMparallel.dir

```
# TITLE:
        RANDOM REGRESSION, L. Schaeffer & J. Dekkers (1994)
# INT-VAR:
         HTD ANIMAL BLOCKVAR
# REAL-VAR:
         COVAR_1 COVAR_2 MILK_YD
# TRAITS:
# TRGRP:
# SORT R: Block code, Relationship code
# FIXRAN: Number of different fixed and random effect
# MODEL: Subgrp. Trait Weight Herd_Test_Day, Animal, Gamma1, Gamma2
                                            2
# BLKORD: Order of effects within herd
                                            1
                                                     1
# RANDOM: Animal, Gamma1, Gamma2
# PEDIGR: Number: Animal, Gamma1, Gamma2
                  1
# REGRES: Number Beta1, Beta2, Herd_Test_Day, Animal, Gamma1, Gamma2
          6
             1 2 cl
                                      cl 1 2
# COMBINE:
# RELMET:
         am
# INPFIL:
        RRM.dat
# VAR:
        3 3 f
# MISSVA:
        0.0
# SCALE:
# PEDFIL:
        RRM.ped
# PARFIL:
        RRM.var
# TMPDIR:
# SOLFOR: Animal effects
# SOLUNF:
# PRECON: WpW, XpX
# NPROC: Number of processors used by the sover program
# COMBLK Number of blocks in common area when using parallel processing
```

Solver option file:

Everything beyond '#' sign is considered as a comment.

RRM.stop

Solution files

Structure of the formatted solution files depends on the model. Therefore, explanation of the content of those files is given in the printout of the particular run of the program.

Solver option file for MiX99 parallel program has been given in 'Input files for Example 9'.

"Solreg"-file contains solutions for general regressions.

Г	Trt	Reg-	-No	Solution	Tra	ait	Covariable	
	1	1		49839E-01	MILK	YD	COVAR 1	
	1	2	5.2	2910	MILK	YD	COVAR_2	

Column 1: Trait number

Column 2: Regression number within trait

Column 3: Solution

Column 4: Name of trait

Column 5: Name of covarible

"Solfix"-file contains solutions for fixed effects.

Fact.	Trt	Level	N-Obs	Solution	Factor Trait
1	1	1	3	19.950	HTD MILK YD
1	1	2	4	20.374	HTD MILK YD
1	1	3	4	20.610	HTD MILK YD
1	1	4	4	19.728	HTD MILK YD
1	1	5	4	18.605	HTD MILK YD
1	1	6	4	17.852	HTD MILK YD

Column 1: Factor number

Column 2: Trait number

Column 3: Level code

Column 4: Number of observations

Column 5: Solution

Column 6: Name of factor

Column 7: Name of trait

[&]quot;Solani"-file contains solutions for genetic animal effect.

```
1
      1
          3 -0.44285
                        0.36871E-01 -0.36877E-01
2
      1
3
      0
4
      0
5
      0
      0
6
7
      2
           0 -0.98762E-01 0.13324E-01 -0.10292E-01
8
      2
           0 0.45726 -0.23798E-01 0.36320E-01
9
      2
           0 -0.62844
                        0.35033E-01 -0.47903E-01
      2
           0 0.45726
10
                        -0.23798E-01 0.36320E-01
      2
          0 -0.18712
                        -0.75122E-03 -0.14515E-01
11
```

Column 1: Animal ID

Column 2: Number of descendants Column 3: Number of observations

Column 4: Solution for Trait 1 MILK_YD and Factor ANIMAL

Column 5: Solution for Trait 1 MILK_YD and Factor COVAR_1(ANIMAL) Column 6: Solution for Trait 1 MILK_YD and Factor COVAR_2(ANIMAL)