

MiX99 features for large models

Martin Lidauer

Which models are large?

Models for which, given a certain computing environment, solving is reaching limits

- Solving time is long or even unacceptable long
- Memory requirements are reaching limitations
- Hard disk space is limited

Large? Maybe if:

- Number of traits >>10
- Number of records >> 1 million
- Number of animals > 1 million
- Number of equations > 50 million
- Non-linear models

MiX99's large-model features aim for

- Reducing computing time
 - Avoiding reading of redundant information
 - Optimizing iteration-on-data calculations by providing information about the structure of the data and model
 - Improving convergence
 - Parallel computing
- Reducing memory requirements
 - Options for fitting models with reduced dimension
 - Reduced memory use option for iteration-on-data

Features for large models

MiX99 is offering several opportunities to speed up solving or reduce memory requirements

- Data sorting
- Input data design
 - Grouping of traits
 - Table values for covariables
- Parallel processing
- Pre-conditioning
- Detection of convergence
- Options for fitting models with reduced dimensions

The suitability of a feature depends on the model

Data sorting

Beneficial for data with repeated observations and essential for parallel computing

- 3 sorting levels:
 - by data blocks herd, cohort, country, ...
 - by relationship code within block animal ID, sire ID, progeny ID, ...

CAUTION: For models with a maternal or paternal effect and a sire-maternal-grand-sire relationship matrix the sire ID must not be used as sorting variable!

MiX99 stores relationship information only once for all records with same relationship code!

by trait group within relationship code

Data sorting

CLIM syntax

DATASORT BLOCK=Herd PEDIGREECODE=Animal

 Sorting by BLOCK or PEDIGREECODE is optional

Sorting by trait group code is mandatory

 If BLOCK is specified, it has to be given in the pedigree and

data file

Both, pedigree and data file have to be sorted by the BLOCK variable

Only data file has to be sorted by the PEDIGREECODE variable

	pe	peaigree file					
2	3	4					

1	2	3	4
Animal	Sire	Dam	Herd
1	-10	-20	100
2	-10	-20	100
3	1	2	100
4	-15	-20	100
5	1	2	102
6	4	-25	102
7	3	-25	103
8	3	7	103

data	fil	ما
uata	111	

1	/ \	2	3	4	1	2
Anima	/	Herd	Year-Season	Age	Milk	Protein
5		102	3	17	5123.5	180.4
6		1 02	3	13	7597.0	243.8
7		103	4	25	6410.3	-9999.0
8		103	3	20	-9999.0	210.7

For certain multiple-trait models it is possible to structure data in a way that significantly speeds up iteration-on-data

For such models MiX99 allows grouping of traits, given

- traits are measured at different time or environment
- and there exists no residual correlations between traits of different trait groups
- or the residual correlation between traits of different trait groups is modelled by a random (e.g. permanent environment) effect

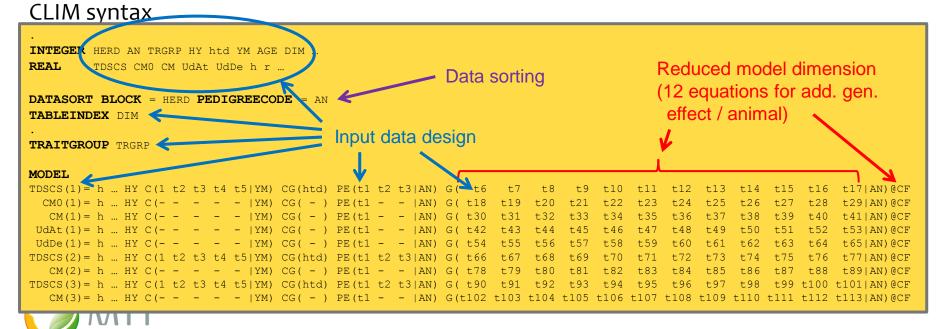
Example A: RRM with 4 traits: milk and protein in 1st and 2nd lactation

Data file		2	3	4		6	1	2	3	4	5	6	7	8
				U				4				0		
without grouping of traits					Covariables				Traits					
	Hrd	Ani	Ag1	Ag2	Se1	Se2	C11	C12	C21	C22	M1	P1	M2	P2
			<u>.</u>	:	<u>:</u>									
	34	10	7	0	5	0	.967	.042	-16.	-16.	12.1	3.40	-16.	-16.
	34 34	10 10	7	0 17	6	10	. 562	.084	-16.	-16.	8.7	3.52	-16.	-16.
	34	10	0	17	0	10	-16. -16.	-16. -16.	.661	.035	-16. -16.	-16. -16.	28.2 32.7	3.37
	34	10	U	17	U	10	10.	10.	.450	.007	10.	10.	34.1	
	•	•	•		·	•	•	•	•			•	•	
	data	file				1	2	3	4	5	1	2	3	4
CLIMA supplies	with	aroi	ping	of tra	aite	Hrd	Ani	Trg	Age	Sea	Cv1	Cv2	Mlk	Prt
CLIM syntax	VVICII	gioc	ipirig	Oi tit	aito					•				•
						34	10	1	7	5	.967	.042	12.1	3.40
DATASORT BLOCK=Hrd PEDI	GREE	CODE:	=Ani			34	10	→ 1	7	6	. 562	.084	8.7	3.52
	Ortz	0022	21111			34	10	2	17	10	.661	. 035	28.2	3.37
TRAITGROUP Trg						34	10	2	17	10	. 430	.087	32.7	-16.
							•	•		_	•	•	•	
MODEL														
Mlk(1) = Hrd LCurve(1)	Cv1	Cv2	Sea)	Age	Ani	G(1	Cv1	Cv2	Ani)					
Prt(1) = Hrd LCurve(1			Sea)	_	Ani		Cv1		Ani)					
Mlk(2) = Hrd LCurve(1)			Sea)	_			Cv1		Ani)					
				_										
Prt(2) = Hrd LCurve(1	CAL	CV2	Sea)	Age	Ani	G (I	Cv1	CV2	Ani)					
•														

For some models with regression functions it is possible to store covariables in a table

Example A: There are only 305 different sets of covariables

	data file with table index	1 Hrd	2 Ani	3 Trg	4 Age	5 Sea	6 DIM	1 M	2 P			
CLIM syntax	With table index	34 34 34 34	10 10 10	1 1 2 2	7 7 17 17	5 6 10 10	268 301 15 48	12.1 8.7 28.2 32.7	3.40 3.52 3.37	cova:		
TABLEFILE covar DIM DATASORT BLOCK=H	.tab Hrd PEDIGREECODE =	-Ani								DIM 5 6 7	1 Cv1 319 323	2 Cv2 . 430 . 429
MODEL Mlk(1) = Hrd LC Prt(1) = Hrd LC Mlk(2) = Hrd LC	Curve(1 t1 t2 Se Curve(1 t1 t2 Se Curve(1 t1 t2 Se Curve(1 t1 t2 Se	ea) A ea) A	ige An ige An	i G(1 t1 1 t1	t2 t2	Ani) Ani)					


Example B: Udder Health Evaluation Model for Nordic RDC

- MT random regression model
 3 TD-SCS traits: 1., 2. & 3. lactation
 4 clinical mastitis traits: 1. (2 traits), 2. & 3. lactation
 - 4 clinical mastitis traits: 1. (2 traits), 2. & 3. lactation
- 2 udder type traits

Combining Test Day SCS with Clinical Mastitis and Udder Type Traits: A Random Regression Model for Joint Genetic Evaluation of Udder Health in Denmark, Finland and Sweden.

Negussie et al., 20010, Interbull Bulletin 42:

- Residual correlations are modelled by VCV matrix for PE effects
- 85 million records, 5.8 million animals, 157 million equations in MME

Parallel processing

- MiX99 has solver programs that can use several CPUs /cores at the same time
- Best speedup by means of minimizing communication
 - maximum data locality within process
 - ordering the equations in the MME to get a nearly doubly-bordered block diagonal form for the coefficient matrix
- MiX99 provides two features to meet these requirements
 - Sorting of the data by a suitable variable to get data locality (DATASORT BLOCK=<sorting variable>)
 - Arranging model effects within or across blocks (WITHINBLOCKORDER <effect names>)

Parallel processing

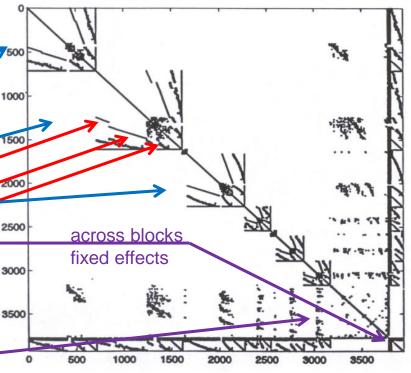
Example C:

milk yield is modelled by a RR model including effects for:

herd-test-day, age, lactation curve year-season, PE, and animal effect

CLIM syntax

DATASORT BLOCK=HERD PEDICREECODE—ANI
WITHINBLOCKORDER HTD PE G


MODEL
milk = HTD AGE LC(t1 t2 t3 t4 t5 | YS) &
PE(t1 t2 t3 | ANI) G(t1 t2 t3 | ANI)

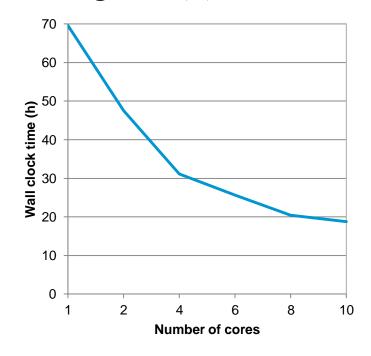
PARALLEI 4 1

4 cores Number of common blocks

MiX99 workshop 2014, Tuusula, Finland

Non-zeros of coefficient matrix form doubly-bordered block diagonal matrix

Only common block equations and equations of herd-changers need to be communicated between cores Common block equations << 10%


Parallel processing

Example D:

Nordic test-day yield evaluation for Holstein

- 252 million observations
- 380 million unknowns
- 2500 PCG iterations
- MiX99 parallel solver using different number of cores

Solving time (h)

Preconditioning

- PCG would converge in one step if all eigenvalues of CM⁻¹ would be the same, i.e. the preconditioner matrix M would be equal to the coefficient matrix C
- Hence, try to find a preconditioner matrix M that approximates C
- However better preconditioner matrices often increase computations
- MiX99 allows to specify for each effect the preconditioner type
 - Diagonal
 - Block diagonal (block size equal to number of traits, or size of VCV-matrix)
 - Full block (only for across block fixed effects)
- A good choice to start with:
 - Fixed effects: Block diagonals
 - Random effects: Diagonals

Preconditioning

Example E:

- Multiple trait RR test-day model with the following effects:
 - fixed effects: herd-year, age, year-season, lactation curve × year-season
 - random effects: herd-TD, RR functions for herd-curve, pe and animal
- Preconditioner alternatives
 - A: Diagonal for all effects
 - B: Block diagonal for all effects (block sizes: fixed 9; random 9, 27, 36, 36)
 - C: Full block for all fixed effects, Block diagonal for all random effects

Preconditioner alternative	Number of Iterations	Solving Time (min)	Size of Pre- conditioner (Mb)
A: Diagonals	3725	56.3	8
B: Block diagonal	584	13.6	140
C: Block diagonal + Full block	598	24.0	250

Convergence

- By definition, given C is positive definite, each conjugate gradient step will yield estimates which are closer to the true solutions
- However, convergence characteristics is affected by many factors
- Overall, larger and more complex models will require more iterations to reach convergence
- Very poor convergence, or even divergence, indicates that the model is ill-conditioned and requires improvements
 - Variance components: are matrices almost singular?
 - Size of pedigree versus phenotype information?
 - Quality of pedigree?
 - Sparseness of observations in multiple trait models?
 - Confounding of environmental and genetic effects?
 - Error in the model input instructions?

16

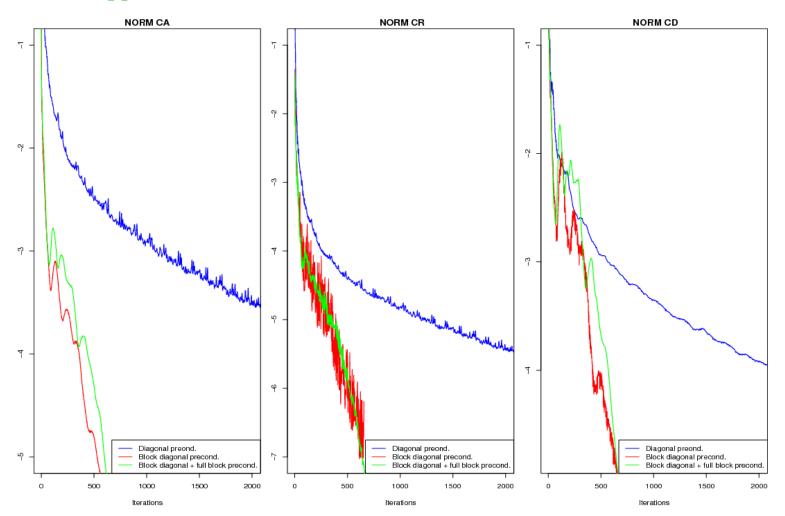
When to stop iterations?

MiX99 reports 3 convergence indicators (norms)

- CA: Relative difference between left-hand and right-hand side of the additive genetic effect equations
- CR: Relative difference between left-hand and right-hand side of the MME
- CD: relative differences between solutions of consecutive iteration rounds
- $cd_{(k)} < 10^{-5}$ indicates convergence, often $cd_{(k)} < 10^{-4}$ is enough

$$ca_{(k)} = \sqrt{\frac{\left(\mathbf{r} - \mathbf{C}\widehat{\mathbf{a}}^{(k)}\right)^T \left(\mathbf{r} - \mathbf{C}\widehat{\mathbf{a}}^{(k)}\right)}{(\mathbf{r}_a)^T (\mathbf{r}_a)}}$$

$$cr_{(k)} = \sqrt{\frac{\left(\boldsymbol{r} - \boldsymbol{C}\hat{\boldsymbol{s}}^{(k)}\right)^{T} \left(\boldsymbol{r} - \boldsymbol{C}\hat{\boldsymbol{s}}^{(k)}\right)}{(\boldsymbol{r})^{T}(\boldsymbol{r})}}$$


$$cd_{(k)} = \sqrt{\frac{\left(\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(k-1)}\right)^T \left(\hat{\boldsymbol{s}}^{(k)} - \hat{\boldsymbol{s}}^{(k-1)}\right)}{(\hat{\boldsymbol{s}}^{(k)})^T (\hat{\boldsymbol{s}}^{(k)})}}$$

where \mathbf{r} , \mathbf{s} , \mathbf{a} = vector of right-hand side, solutions, add. gen. effects; \mathbf{C} = coefficient matrix of MME; and \mathbf{k} = iteration round

For routine evaluations, optimal stopping point depends on publishing precision of EBVs

Convergence indicators

Example E: Convergence when applying different preconditioning

Reducing model dimension

Complex multiple-trait or random regression models are often over parameterized

- Investigating the eigenvalues of applied variance components often reveals possibilities for reducing the model dimensions
- Advantage:
 - Significant reduction in memory requirements
 - Improved convergence characteristics
 - Reduced solving time

The next presentation will deal with this topic

THANK YOU

